## Pre-Calculus Exercises

A. Prove the following identities.

1. $\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$
2. $\sin (3 x)=3 \sin (x)-4 \sin (x)^{3}$
3. $\cos (x) \cos (y)=\frac{\cos (x-y)+\cos (x+y)}{2}$
B. Refer to the diagram of the triangle. Find the indicated value for each given set of angle and side measurements. Then find the area of the triangle.

4. $a=6, B=\pi / 2, A=\pi / 4, c=$ ?
5. $a=1, b=1, C=\pi / 3, c=$ ?
6. $A=\pi / 2, b=3, C=\pi / 4, a=$ ?
7. $C=\pi / 2, a=1, b=1, c=$ ?
8. $a=b=c=1, A=$ ?
C. Draw the following sets on a number line.
9. $(0,3) \cup(4,6)$
10. $[0,5] \cap(1,10]$
11. $\{2 x: x \in \mathbb{R}\} \cap(0,10)$
12. $\left\{x^{2}: x \in \mathbb{R}\right\} \cup(0,1)$
13. $\left\{x \in \mathbb{R}: x^{2}-4<0\right\}$
14. $\left\{x \in \mathbb{R}: x^{2}>0\right\}$
D. For each real-function, state the (largest possible) domain and range. State whether the function is injective, surjective, and/or bijective. Then find a restricted domain and codomain on which the function is invertible, and find its inverse.
15. $f(x)=\sqrt{x}$
16. $f(x)=x^{3}$
17. $f(x)=x^{4}$
18. $f(x)=\frac{1}{x+1}$
19. $f(x)=\frac{x}{x^{2}+x}$
20. $f(x)=\cos (x)$
21. $f(x)=\tan (x)$
22. $f(x)=\csc (x)$
23. $f(x)=\log _{2}(x)$
