Complex Numbers Exercises

- 1. For an arbitrary z = x + iy, when is $\theta = \tan^{-1}\left(\frac{y}{x}\right)$ and when is it not?
- 2. Two complex numbers z and w are given by z = 3 + 4i and w = 2 i. Plot (a) z + w, (b) w z, (c) wz, (d) z/w, (e) $z^*w + w^*z$, and (f) w^2 .)
- 3. Find the polar representation of the following complex numbers:
 - (a) $-\sqrt{3} + i$ (b) 2 - 2i(c) -i3/2(d) $(-1 - \sqrt{3}i)/2$ (e) i(f) -2
- 4. Does $z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$ hold for $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$? Check that with $z_1 = \sqrt{3} + i$ and $z_2 = (3/2)(1 + i\sqrt{3})$.
 - 5. By considering the real and imaginary parts of the product $e^{iA}e^{iB}$ prove the standard formulas for $\cos(A+B)$ and $\sin(A+B)$.