Trigonometry

Limits
$(\cos \theta, \sin \theta)$ is the coordinate on the unit circle that makes angle θ with the positive x-axis.

Law \quad Let $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$.
Sum $\quad \lim _{x \rightarrow a}(f(x)+g(x))=L+M$
Scalar $\quad \lim _{x \rightarrow a} c f(x)=c L$
Product $\lim _{x \rightarrow a}(f(x) \cdot g(x))=L \cdot M$
Quotient $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}$ for $M \neq 0$
Power $\quad \lim _{x \rightarrow a}(f(x))^{n}=L^{n}$
Root $\quad \lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{L}$ for all L if n is odd,
and for $L \geq 0$ if n is even and $f(x) \geq 0$.

Squeeze Theorem:

Let f, g, and h be functions with $g(x) \leq f(x) \leq h(x)$ for all x and $\lim _{x \rightarrow a} g(x)=L=\lim _{x \rightarrow a} h(x)$, then $\lim _{x \rightarrow a} f(x)=L$.

Indeterminate Forms:

$\frac{0}{0}, \frac{\infty}{\infty}, 0^{0}, \infty-\infty, 1^{\infty}, 0 \cdot \infty, \infty^{0}$

$\varepsilon-\delta$ definition:

L is the limit of f as x approaches a if for all $\varepsilon>0$, there is some $\delta>0$, such that
$|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon$.

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1 \quad \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e \quad \lim _{x \rightarrow \infty} \frac{a x^{n}+\ldots}{b x^{m}+\ldots}= \begin{cases}0 & m>n \\ \infty & n>m \\ a / b & n=m\end{cases}
$$

Continuity

Definition: f is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)=f(a)$.

- The following functions are continuous on their domains: polynomials, rational functions, trig and inverse trig functions, exponential functions, logarithms.
- The sum, product, and composition of continuous functions is continuous.

Composite Function Theorem: Intermediate Value Theorem:

If $f(x)$ is continuous at L
and $\lim _{x \rightarrow a} g(x)=L$, then
$\lim _{x \rightarrow a} f(g(x))=f(L)$.

Let f be continuous over a closed, bounded interval $[a, b]$. If z is any real number between $f(a)$ and $f(b)$, then there is a number c in $[a, b]$ satisfying $f(c)=z$.

Finding Derivatives

Limit definition of the derivative:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Tangent line to $f(x)$ at $x=a$:

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

L'Hôpital's Rule:

If $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ or ∞, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Scalar Rule	$[a f]^{\prime}=a f^{\prime}$
Sum Rule	$[f+g]^{\prime}=f^{\prime}+g^{\prime}$
Product Rule	$[f g]^{\prime}=f^{\prime} g+f g^{\prime}$
Quotient Rule $\left[\frac{f}{g}\right]^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$	
Chain Rule	$[f(g(x))]^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$
Inverse Rule	$\left[f^{-1}(x)\right]^{\prime}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$

Logarithmic Differentiation:

To find the derivative of $y=f(x)^{g(x)}$, take $\ln ()$ of both sides, bring $g(x)$ down using the \log rule $\left(\ln \left(a^{b}\right)=b \ln (a)\right)$:

$$
\ln (y)=\ln \left(f(x)^{g(x)}\right)=g(x) \ln (f(x))
$$

Then implicitly differentiate and solve for y^{\prime} :

$$
y^{\prime}=f(x)^{g(x)}\left(g^{\prime}(x) \ln (f(x))+g(x) \frac{f^{\prime}(x)}{f(x)}\right)
$$

Power Rule

$$
\left[x^{a}\right]^{\prime}=a x^{a-1}
$$

Trig Rules

$$
[\sin (x)]^{\prime}=\cos (x)
$$

$$
[\tan (x)]^{\prime}=\sec ^{2}(x)
$$

$$
[\sec (x)]^{\prime}=\sec (x) \tan (x)
$$

Inverse Trig Rules $[\arcsin (x)]^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$

$$
[\arctan (x)]^{\prime}=\frac{1}{1+x^{2}}
$$

$$
[\operatorname{arcsec}(x)]^{\prime}=\frac{1}{|x| \sqrt{x^{2}-1}}
$$

Exponent Rule $\quad\left[a^{x}\right]^{\prime}=\ln (a) a^{x}$
Logarithm Rule $\quad\left[\log _{a}(x)\right]^{\prime}=\frac{1}{x \ln (a)}$

Integration

Definitions

- The definite integral of f on (a, b) is written $\int_{a}^{b} f(x) d x$ and is defined to be the signed area between the graph of f and the x-axis (if such a quantity exists).
- The indefinite integral (or anti-derivative) of f on is written $\int f(x) d x$ or $\int f$ is the family of functions whose derivative is f.
Fundamental Theorem of Calculus: If $F^{\prime}=f$,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

Rules for Integration:

Scalar Rule	$\int a f=a \int f$.
Sum Rule	$\int f+\int g=\int f+\int g$
Integration by Parts	$\int f^{\prime} g=f g-\int f g^{\prime}$
u-substitution	$\int f^{\prime}(g(x)) g^{\prime}(x) d x=f(g(x))$
Power Rule	$\int x^{a} d x= \begin{cases}\frac{1}{a+1} x^{a+1}+C & a \neq-1 \\ \ln \|x\|+C & a=-1\end{cases}$
Trig Rules	$\int \sin (x) d x=-\cos (x)+C$
Exponential Rules	$\int \cos (x) d x=\sin (x)+C$

Partial Fractions:

Factor	Term in decomposition
$a x+b$	$\frac{A}{a x+b}$
$(a x+b)^{k}$	$\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{k}}{(a x+b)^{k}}$
$a x^{2}+b x+c$	$\frac{A x+B}{a x^{2}+b x+c}$
$\left(a x^{2}+b x+c\right)^{k}$	$\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{k} x+B_{k}}{\left(a x^{2}+b x+c\right)^{k}}$

Trig Substitution:

Integrand	Substitution	Result
$\sqrt{a^{2}-x^{2}}$	$x=a \sin \theta$	$a \cos \theta$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan \theta$	$a \sec \theta$
$\sqrt{x^{2}-a^{2}}$	$x=a \sec \theta$	$a \tan \theta$

Riemann Sums

$$
\begin{aligned}
& R_{n}=\sum_{k=1}^{n} f\left(a+k \frac{b-a}{n}\right) \frac{b-a}{n} \\
& L_{n}=\sum_{k=1}^{n} f\left(a+(k-1) \frac{b-a}{n}\right) \frac{b-a}{n} \\
& T_{n}=\sum_{i=k}^{n} \frac{f\left(a+(k-1) \frac{b-a}{n}\right)+f\left(a+k \frac{b-a}{n}\right)}{2} \frac{b-a}{n}
\end{aligned}
$$

Sums of Powers

- $\sum_{k=1}^{n} 1=n$
- $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
- $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
- $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$

Test for Convergence and Divergence

- Divergence Test: If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum a_{n}$ will diverge.
- Integral Test: Suppose that $f(x)$ is a continuous, positive, and decreasing function on the interval $[k, \infty)$ and that $f(n)=a_{n}$. Then

$$
\int_{k}^{\infty} f(x) d x \text { is convergent } \Longleftrightarrow \sum_{n=k}^{\infty} a_{n} \text { is convergent. }
$$

- The p-series Test: If $k>0$, then $\sum_{n=k}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
- Comparison Test: Suppose that we have two series $\sum a_{n}$ and $\sum b_{n}$, with $0 \leq a_{n} \leq b_{n}$ for all n. Then

$$
\sum b_{n} \text { converges } \Longrightarrow \sum a_{n} \text { converges. }
$$

- Limit Comparison Test: Suppose that we have two series $\sum a_{n}$ and $\sum b_{n}$ with $a_{n} \geq 0$ and $b_{n}>0$ for all n. Define $c=\lim _{n \rightarrow \infty} a_{n} / b_{n}$. If c is positive and finite, then either both series converge of both series diverge.
- Alternating Series Test: Suppose that we have a series $\sum a_{n}$ and either $a_{n}=(-1)^{n} b_{n}$ or $a_{n}=(-1)^{n+1} b_{n}$ where $b_{n} \geq 0$ for all n. Then if $\lim _{n \rightarrow \infty} b_{n}=0$ and $\left\{b_{n}\right\}$ is a decreasing sequence, the series $\sum a_{n}$ is convergent.

- Absolute Convergence Test:

- If the series $\sum\left|a_{n}\right|$ is convergent, then $\sum a_{n}$ is called absolutely convergent, and must also be convergent.
- If $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges, then the series $\sum a_{n}$ is called conditionally convergent.
- Ratio Test: For series $\sum a_{n}$, define, $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$. Then,

1. if $L<1$ the series is absolutely convergent (and hence convergent).
2. if $L>1$ the series is divergent.
3. if $L=1$ the series may be divergent, conditionally convergent, or absolutely convergent.

- Root Test For series $\sum a_{n}$, define, $L=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}$. Then,

1. if $L<1$ the series is absolutely convergent (and hence convergent).
2. if $L>1$ the series is divergent.
3. if $L=1$ the series may be divergent, conditionally convergent, or absolutely convergent.
