Trigonometry

 $(\cos \theta, \sin \theta)$ is the coordinate on the unit circle that makes angle θ with the positive *x*-axis.

$$\sec \theta = \frac{1}{\cos \theta} \qquad \csc \theta = \frac{1}{\sin \theta}$$
$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$
$$Pythagorean identities
$$\begin{cases} \sin^2 \theta + \cos^2 \theta = 1\\ \tan^2 \theta + 1 = \sec^2 \theta\\ 1 + \cot^2 \theta = \csc^2 \theta \end{cases}$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\sin(2\theta) = 2 \sin \theta \cos \theta$$
$$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$$
$$\begin{pmatrix} \sqrt{2}, \sqrt{2}, \sqrt{2} \\ \sqrt{2}, \sqrt{2} \end{pmatrix} \begin{pmatrix} \sqrt{2}, \sqrt{2} \end{pmatrix} \begin{pmatrix} \sqrt{2}, \sqrt{2} \\ \sqrt{2}, \sqrt{2} \end{pmatrix} \begin{pmatrix} \sqrt{2}, \sqrt{2} \\ \sqrt{2}, \sqrt{2} \end{pmatrix} \begin{pmatrix} \sqrt{2}, \sqrt{2} \end{pmatrix} \begin{pmatrix}$$$$

Limits

Law	Let $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$.	Squeeze Theorem: Let <i>f</i> , <i>a</i> , and <i>h</i> be functions with
Sum	$\lim_{x \to a} (f(x) + g(x)) = L + M$	$g(x) \le f(x) \le h(x)$ for all x and lim $g(x) = L = \lim h(x)$, then
Scalar	$\lim_{x \to a} cf(x) = cL$	$\lim_{x \to a} f(x) = L.$
Product Quotient	$\lim_{x \to a} (f(x) \cdot g(x)) = L \cdot M$ $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M} \text{ for } M \neq 0$	Indeterminate Forms: $\frac{0}{0}, \frac{\infty}{\infty}, 0^0, \infty - \infty, 1^{\infty}, 0 \cdot \infty, \infty^0$
Power	$\lim_{x \to a} (f(x))^n = L^n$	$\varepsilon - \delta$ definition: <i>L</i> is the limit of <i>f</i> as <i>x</i> approaches
Root	$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L} \text{ for all } L \text{ if } n \text{ is odd,}$ and for $L \ge 0$ if n is even and $f(x) \ge 0$.	<i>a</i> if for all $\varepsilon > 0$, there is some $\delta > 0$, such that $ x - a < \delta \implies f(x) - L < \varepsilon$

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \qquad \lim_{x \to \infty} \frac{ax^n + \dots}{bx^m + \dots} = \begin{cases} 0 \\ \infty \\ a/b \end{cases}$$

Continuity

Definition: f is continuous at x = a if $\lim_{x \to a} f(x) = f(a)$.

- The following functions are **continuous on their domains**: polynomials, rational functions, trig and inverse trig functions, exponential functions, logarithms.
- The sum, product, and composition of continuous functions is continuous.

Composite Function Theorem: Intermediate Value Theorem:

If f(x) is continuous at Land $\lim_{x \to a} g(x) = L$, then $\lim_{x \to a} f(g(x)) = f(L).$

Let f be continuous over a closed, bounded interval [a, b]. If *z* is any real number between f(a) and f(b), then there is a number *c* in [a, b] satisfying f(c) = z.

(^

m > nn > mn = m

Finding Derivatives

Limit definition of the derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Tangent line to f(x) at x = a:

$$L(x) = f(a) + f'(a)(x - a)$$

L'Hôpital's Rule: If $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ or ∞ , then

lim	$f(\mathbf{x})$	_	lim	f'(z)	x)
$x \rightarrow a$	$\overline{g(x)}$	_	$\lim_{x \to a}$	$\overline{g'(z)}$	$\overline{\mathfrak{c}}$.

Scalar Rule	[af]' = af'
Sum Rule	[f+g]'=f'+g'
Product Rule	[fg]' = f'g + fg'
Quotient Rule	$\left[\frac{f}{g}\right]' = \frac{f'g - fg'}{g^2}$
Chain Rule	[f(g(x))]' = f'(g(x))g'(x)
Inverse Rule	$[f^{-1}(x)]' = \frac{1}{f'(f^{-1}(x))}$

Logarithmic Differentiation:

To find the derivative of $y = f(x)^{g(x)}$, take ln() of both sides, bring q(x) down using the log rule $(\ln(a^b) = b \ln(a))$:

$$\ln(y) = \ln(f(x)^{g(x)}) = g(x) \ln(f(x))$$

Then implicitly differentiate and solve for y':

$$y' = f(x)^{g(x)} \left(g'(x) \ln(f(x)) + g(x) \frac{f'(x)}{f(x)} \right).$$

Power Rule	$[x^a]' = ax^{a-1}$	
Trig Rules	$[\sin(x)]' = \cos(x)$	$[\cos(x)]' = -\sin(x)$
(PSST!)	$[\tan(x)]' = \sec^2(x)$	$[\cot(x)]' = -\csc^2(x)$
	$[\sec(x)]' = \sec(x)\tan(x)$	$[\csc(x)]' = -\csc(x)\cot(x)$
Inverse Trig Rules	$[\arcsin(x)]' = \frac{1}{\sqrt{1-x^2}}$	$[\arccos(x)]' = \frac{-1}{\sqrt{1-x^2}}$
	$[\arctan(x)]' = \frac{1}{1+x^2}$	$[\operatorname{arccot}(x)]' = \frac{-1}{1+x^2}$
	$[\operatorname{arcsec}(x)]' = \frac{1}{ x \sqrt{x^2 - 1}}$	$[\operatorname{arccsc}(x)]' = \frac{-1}{ x \sqrt{x^2 - 1}}$
Exponent Rule	$[a^x]' = \ln(a)a^x$	
Logarithm Rule	$[\log_a(x)]' = \frac{1}{x \ln(a)}$	

Integration

Definitions

- The *definite integral* of f on (a, b) is written $\int_a^b f(x) dx$ and is defined to be the *signed* area between the graph of f and the *x*-axis (if such a quantity exists).
- The *indefinite integral* (or *anti-derivative*) of f on is written $\int f(x) dx$ or $\int f$ is the family of functions whose derivative is f.

Fundamental Theorem of Calculus: If F' = f,

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a).$$

Rules for Integration:

Scalar Rule	$\int af = a \int f.$		
Sum Rule	$\int f + \int g = \int f + \int g$		
Integration by Parts	$\int f'g = fg - \int fg'$		
<i>u</i> -substitution	$\int f'(g(x))g'(x) \ dx = f(g(x))$		
Power Rule	$\int x^a dx = \begin{cases} \frac{1}{a+1} x^{a+1} + C & a \neq -1 \\ \ln x + C & a = -1 \end{cases}$		
Trig Rules	$\int \sin(x) dx = -\cos(x) + C$		
	$\int \cos(x) dx = \sin(x) + C$		
Exponential Rules	$\int a^x dx = \frac{1}{\ln(a)} a^x + C$		

Partial Fractions:

Factor	Term in decomposition
ax + b	$\frac{A}{ax+b}$
$(ax+b)^k$	$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_k}{(ax+b)^k}$
$ax^2 + bx + c$	$\frac{Ax+B}{ax^2+bx+c}$
$(ax^2 + bx + c)^k$	$\frac{A_1x+B_1}{ax^2+bx+c} + \frac{A_2x+B_2}{(ax^2+bx+c)^2} + \dots + \frac{A_kx+B_k}{(ax^2+bx+c)^k}$

Trig Substitution:

Integrand	Substitution	Result
$\sqrt{a^2 - x^2}$	$x = a\sin\theta$	$a\cos\theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$	$a \sec \theta$
$\sqrt{x^2 - a^2}$	$x = a \sec \theta$	$a \tan \theta$

Riemann Sums

$$R_{n} = \sum_{k=1}^{n} f\left(a + k\frac{b-a}{n}\right) \frac{b-a}{n}$$

$$L_{n} = \sum_{k=1}^{n} f\left(a + (k-1)\frac{b-a}{n}\right) \frac{b-a}{n}$$

$$T_{n} = \sum_{i=k}^{n} \frac{f(a+(k-1)\frac{b-a}{n}) + f(a+k\frac{b-a}{n})}{2} \frac{b-a}{n}$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

Test for Convergence and Divergence

- **Divergence Test:** If $\lim_{n \to \infty} a_n \neq 0$, then $\sum a_n$ will diverge.
- **Integral Test:** Suppose that f(x) is a continuous, positive, and decreasing function on the interval $[k, \infty)$ and that $f(n) = a_n$. Then

$$\int_{k}^{\infty} f(x) \, dx \text{ is convergent} \iff \sum_{n=k}^{\infty} a_n \text{ is convergent.}$$

- The *p*-series Test: If k > 0, then $\sum_{n=k}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.
- **Comparison Test:** Suppose that we have two series $\sum a_n$ and $\sum b_n$, with $0 \le a_n \le b_n$ for all *n*. Then

$$\sum b_n$$
 converges $\implies \sum a_n$ converges.

- Limit Comparison Test: Suppose that we have two series $\sum a_n$ and $\sum b_n$ with $a_n \ge 0$ and $b_n > 0$ for all n. Define $c = \lim_{n \to \infty} a_n/b_n$. If c is positive and finite, then either both series converge of both series diverge.
- Alternating Series Test: Suppose that we have a series $\sum a_n$ and either $a_n = (-1)^n b_n$ or $a_n = (-1)^{n+1} b_n$ where $b_n \ge 0$ for all n. Then if $\lim_{n \to \infty} b_n = 0$ and $\{b_n\}$ is a decreasing sequence, the series $\sum a_n$ is convergent.
- Absolute Convergence Test:
 - If the series $\sum |a_n|$ is convergent, then $\sum a_n$ is called **absolutely convergent**, and must also be convergent.
 - If $\sum a_n$ converges but $\sum |a_n|$ diverges, then the series $\sum a_n$ is called **conditionally convergent**.
- **Ratio Test:** For series $\sum a_n$, define, $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. Then,
 - 1. if *L* < 1 the series is absolutely convergent (and hence convergent).
 - 2. if L > 1 the series is divergent.
 - 3. if L = 1 the series may be divergent, conditionally convergent, or absolutely convergent.
- **Root Test** For series $\sum a_n$, define, $L = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$. Then,
- 1. if L < 1 the series is absolutely convergent (and hence convergent).
- 2. if L > 1 the series is divergent.
- 3. if L = 1 the series may be divergent, conditionally convergent, or absolutely convergent.