
C𝛼 lculus
Peter E. Francis

Draft: 2024-04-18 19:35:33Z

I would like to thank the following people who have offered suggestions and help putting
this together: Keir Lockridge, Samira Arfaee.

Department of Mathematics
Stony Brook University
Stony Brook, NY 11794, USA, Earth

peter.e.francis@stonybrook.edu



CONTENTS CONTENTS

Contents

I Pre-Calculus 5

1 Trigonometry 5
1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Values on the Unit Circle . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The Pythagorean and Other Identities . . . . . . . . . . . . . . . . 7
1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 There’s Always More Trigonometry… . . . . . . . . . . . . . . . . 9

2 Functions on the Real Line 11
2.1 Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Subsets of the Real Line . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Defining Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 More Domains and Ranges . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

II Limits and Continuity 16

3 Limits 16
3.1 Intuitive Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Infinite Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Optional: The 𝜀 − 𝛿 Definition . . . . . . . . . . . . . . . . . . . . 17
3.4 Limit Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Limit “Tricks” and Key Examples . . . . . . . . . . . . . . . . . . . 19

4 Continuity 21
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Using Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

III Derivatives and Applications 23

5 The Derivative 23
5.1 The Limit Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 The Two Part “Program” for Finding Derivatives . . . . . . . . . . 24
5.3 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Parametric Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Logarithmic Differentiation . . . . . . . . . . . . . . . . . . . . . . 25
5.6 Using The Inverse Rule . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Applications of Derivatives 28
6.1 Linear Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 L’Hôpital’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 Related Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.5 Qualities of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.6 Extremal Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.7 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.8 Newton’s Method for Finding Roots . . . . . . . . . . . . . . . . . 32

2



CONTENTS CONTENTS

IV Integration and Applications 34

7 The Definite Integral 34
7.1 The Definite Integral . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2 Reimann Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3 The Fundamental Theorem of Calculus . . . . . . . . . . . . . . . 36

8 The Indefinite Integral 37
8.1 Anti-differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2 Partial Fraction Decomposition . . . . . . . . . . . . . . . . . . . . 38
8.3 Trigonometric Substitution . . . . . . . . . . . . . . . . . . . . . . 38

9 More Definite Integrals 40
9.1 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2 Even and Odd Functions . . . . . . . . . . . . . . . . . . . . . . . 40

10 Applications of Integrals 41
10.1 Average Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.3 Volumes and Surface Area . . . . . . . . . . . . . . . . . . . . . . 41
10.4 Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.5 Moments and Centroids . . . . . . . . . . . . . . . . . . . . . . . . 41
10.6 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

V Sequences and Series 42

11 Sequences 42

12 Tests for Convergence and Divergence 42

13 Power Series 45

3



CONTENTS CONTENTS

A Note to Students
This text is meant to serve as a condensed resource for a student taking their first
or second semester of calculus. I am writing with the assumption that the reader
is familiar with some trigonometry/pre-calculus, but has perhaps forgotten some
of it. While statements I write are always true, they will often not be entirely
rigorous or stated with full generality. Use the big margins to make your own
notes.

I’ll leave prompts and
questions in boxes like this.

My goal is to communicate what I believe are the key ideas in an introductory
calculus class that will help the average student succeed. Here are my sugges-
tions for doing well in calculus (that should be cyclically repeated!):

1. Spend time fully understanding key concepts.

2. Identify and learn about common types of problems and exercises.

3. Find some really good examples.

4. Practice a lot!

When you begin learning calculus, it is OK not to understand everything
right away. It takes time for some concepts to sink in. Doing a lot of practice will
help you start developing intuition about how to tackle new problems, even if
you don’t fully comprehend everything you are doing. Eventually, your problem-
solving skills and your abstract understanding will both be strong, but they need
to grow together and build off each other. It is good to sit and actually think about
something for a while without doing any writing. Keep at it and eventually you
will be able to conjure pictures and animations in your head that relate ideas and
succinctly encapsulate the idea of a problem or theorem.

P.S.
You might be thinking: “What the &%$# is calculus?!”.

Well, let me save you a trip to Wikipedia. At its core, calculus is the study of
change. Its name comes from the Latin word for “pebbles” because the main idea
of calculus is to study things that are changing in non-linear ways by breaking
them up into small pieces (like pebbles) that can be thought of as linear, and then
putting them back together.

P.P.S
Ok… I lied. The pebbles actually refer to the beads on an abacus, but a professor
of mine once told me the other version, and I like that better!
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1 TRIGONOMETRY

Part I

Pre-Calculus
1 Trigonometry
Theword “trigonometry” comes from the ancient Greek words for “triangle” and
“measure”, and it has found its way into just about every possible branch of math-
ematics and science. Youwould be putting yourself at a disadvantage not tomake
sure you are comfortable with at least the basic ideas of trigonometry before con-
tinuing to calculus.

You should think about trigonometry in two ways:

1. pragmatically (it is a useful tool for solving problems, and there are some
things you should memorize)

2. abstractly (it is really just a way to talk about similar triangles)

1.1 Basic Definitions
The unit circle is the circle with (unit) radius 1, centered at the origin, (0, 0).
When we draw a radius of the unit circle, it forms an angle 𝜃 with the positive
side of the horizontal axis.

𝜃

(cos𝜃, sin𝜃 )

1

Figure 1: sin𝜃 and cos𝜃 are coordinates

This line segment always has length 1, and connects the origin to some point
on the circle. We define cos𝜃 and sin𝜃 to be the 𝑥 and𝑦 coordinates of this point.
In other words, cos𝜃 is defined to be the (signed) length of the horizontal leg of
the right triangle and similarly, sin𝜃 is defined to be the (signed) length of the
vertical leg.

We measure angles in either degrees or radians. The angle 𝜃 can be any real
number, but there are 2𝜋 radians (or 360°) in one full revolution. Imagine the
angle 𝜃 changing, making the radius sweep around the circle like a SONAR on
a submarine. The hypotenuse of the triangle stays constantly at 1, but the side
lengths fluctuate between 1 and 0.

Draw a picture: where on the
unit circle is cos𝜃 positive
and where is it negative?
How about sin𝜃?
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1.2 Values on the Unit Circle 1 TRIGONOMETRY

The two functions sin and cos are the basic building blocks, but there are four
other commonly used trig functions. They are defined as follows:

sec𝜃 =
1

cos𝜃 , csc𝜃 =
1

sin𝜃 , tan𝜃 =
sin𝜃
cos𝜃 , cot𝜃 =

cos𝜃
sin𝜃 .

These functions also have visual representations on the unit circle.

𝜃

sec𝜃

csc𝜃

cot𝜃

tan𝜃

cos𝜃

sin
𝜃

1

Figure 2: The six common trig functions on the unit circle

To explore these functions, check out this graph on Desmos.

1.2 Values on the Unit Circle
There are several angles 𝜃 for which you should be able to compute sin𝜃 and
cos𝜃 (then computing the other four trig functions is easy). Luckily, there is a
lot of symmetry involved: it is only necessary to memorize a few numbers and
then you can easily fill in the rest.

Below is a diagram of all of the angles whose sin and cos you should be
familiar with.

It might seem intimidating, but just focus on the first (upper-right) quadrant
and the first five angles there:

𝜃 cos𝜃 sin𝜃

0
√
4/2

√
0/2

𝜋/6
√
3/2

√
1/2

𝜋/4
√
2/2

√
2/2

𝜋/3
√
1/2

√
3/2

𝜋/2
√
0/2

√
4/2
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1.3 The Pythagorean and Other Identities 1 TRIGONOMETRY

Figure 3: The Unit Circle

In this table, I wrote the numbers in an “un-simplified” way so you can see
the pattern: their numerators change by 1 under a square-root, and as one goes
up, the other goes down.

You can also see that the values for other angles are the same number, but
with a different sign (according to the quadrant they are in), and that the unit
circle is symmetric, reflecting over the 𝑥 and 𝑦 axis.

1.3 The Pythagorean and Other Identities
Remember the Pythagorean Theorem, 𝑎2 + 𝑏2 = 𝑐2? Well, since sin𝜃 and cos𝜃
are the lengths of a right triangle with hypotenuse 1, we have the following
Pythagorean identity:

cos2 𝜃 + sin2 𝜃 = 1.

Dividing this equation by sin2 𝜃 or cos2 𝜃 , we get

Which of the following are
the same?

sin𝜃 2 sin2 𝜃
sin(𝜃 2) sin(𝜃 )2
(sin(𝜃 ))2 (sin𝜃 )2

cot2 𝜃 + 1 = csc2 𝜃 and 1 + tan2 𝜃 = sec2 𝜃 .

There is some nice symmetry between sin𝜃 and cos𝜃 . The leg opposite the
angle is 𝜃 is sin𝜃 . Since the internal angles of a triangle sum to 𝜋 , the other acute
angle is 𝜋

2 − 𝜃 . Then, the leg opposite 𝜋
2 − 𝜃 has length sin

(
𝜋
2 − 𝜃

)
, but is also

Label the angle 𝜋
2 − 𝜃 on

Figure 1.1.

cos𝜃 . Therefore,
sin

(𝜋
2 − 𝜃

)
= cos(𝜃 ).

Similarly,
cos

(𝜋
2 − 𝜃

)
= sin(𝜃 ).

Looking at the picture of the unit circle, we can also see that

sin(−𝜃 ) = − sin(𝜃 ) and cos(−𝜃 ) = cos(𝜃 ).
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1.4 Applications 1 TRIGONOMETRY

There is one more kind of identity that will be useful for us:

sin(𝐴 ± 𝐵) = sin𝐴 cos𝐵 ± cos𝐴 sin𝐵,

cos(𝐴 ± 𝐵) = cos𝐴 cos𝐵 ∓ sin𝐴 sin𝐵.

These are called the angle sum formulas, and they are long but if you read
them out loud, they make a little song! Try it while clapping on each word:

“SINE-COSINE-COSINE-SINE. COSINE-COSINE-SINE-SINE.”
No seriously, sing the song.
Now do it again.

Once you remember the order of the functions, you just have to remember that
the𝐴s and 𝐵s alternate and that the sign in the second equation flips (± becomes
∓).

These simplify if 𝐴 and 𝐵 are the same angle 𝜃 to what are called the double
angle formulas. In this case,

sin(2𝜃 ) = 2 sin𝜃 cos𝜃

and

cos(2𝜃 ) = cos2 𝜃 − sin2 𝜃
= 1 − 2 sin2 𝜃
= 2 cos2 𝜃 − 1.

Check that these are correct.
Hint: use the Pythagorean
identity.

1.4 Applications
So, how do we use trigonometry to help solve problems? The main way that
trigonometry is useful for you as a calculus student is two-fold. One is as a source
of nice function examples to play around with (once we start taking limits and
derivatives). The other is as a means to fill in missing information (this is the
“SOH-CAH-TOA” you might remember).

Let’s say you have a right triangle with hypotenuse 8 and one a 30° angle.

30°

8

𝑥

𝑦

30°

1

𝑥/8

𝑦/8

÷8

Figure 4: Similar Triangles

If you want to know what the other side lengths are, this is how you can use
trigonometry to do it! First, scale the triangle down by the side length that you
know (in this case 8). This doesn’t change the angles, so we now have a right
triangle with hypotenuse 1. By definition of sin and cos,

sin 30° = 𝑦

8 and cos 30° = 𝑥

8 ,

8



1.5 There’s Always More Trigonometry… 1 TRIGONOMETRY

so we can solve for 𝑥 and 𝑦:

𝑦 = 8 sin 30° = 4 and 𝑥 = 8 cos 30° = 4
√
3.

Themnemonic device “SOH-CAH-TOA” reminds us that Sin of 30° is the Opposite
leg (𝑦) over the Hypotenuse (8), and Cos of 30° is the Adjacent leg (𝑥 ) over the
Hypotenuse (8).

What does the “TOA” part
say? What situation would it
help you figure something
out about a triangle?

The identities that we learned about also have many applications, but mostly
are in simplifying calculuations. You should keep them in mind so you recognize
when they might be helpful in simplifying an expression. Here is a cool example:

sin (2𝜃 )
(
tan𝜃 + cot𝜃

2

)
= 2 sin𝜃 cos𝜃

( sin𝜃
cos𝜃 + cos𝜃

sin𝜃
2

)
= sin𝜃 cos𝜃

(
sin𝜃
cos𝜃 + cos𝜃

sin𝜃

)
= sin2 𝜃 + cos2 𝜃
= 1.

Trig identities can also be a computationally useful tool: if you need to know
the Sine (or Cosine, etc.) of an angle you are not familiar with, write the angle
as a sum or difference of angles you know and use the angle sum formulas. For
example,

cos(15°) = cos(45° − 30°)
= cos(45°) cos(30°) + sin(45°) sin(30°)

=

√
2
2

√
3
2 +

√
2
2

1
2

=

√
6 +

√
2

4 . Can you compute tan(75°)?

1.5 There’s Always More Trigonometry…
Trigonometry dates back to the 3rd century BCE and needless to say it has
changed a bit over the years. We’ve only covered the basics and focused on
the trigonometry involving right triangles. There is always more trigonometry
to learn: more trigonometric functions and MANY more relations among them!
I won’t pester you with many more right now, but they might come up in the
future, so just be aware.

The two very common laws of trigonometry that involve non-right triangles
are the Law of Sines and the Law of Cosines. I will state them here (for culture).

Figure 1.5 shows a triangle with internal angles 𝐴, 𝐵, and 𝐶 , and respective
opposite side lengths 𝑎, 𝑏, and 𝑐 . The triangle is circumscribed in a circle, mean-
ing its vertices lie on the circle’s boundary. It turns out that the circle has radius

𝑅 =
𝑎𝑏𝑐√︁

(𝑎 + 𝑏 + 𝑐) (𝑎 − 𝑏 + 𝑐) (𝑎 + 𝑏 − 𝑐) (−𝑎 + 𝑏 + 𝑐)
.

Theorem 1.1 (Law of Sines). If a triangle has sides and angles as above,
then

𝑎

sin𝐴 =
𝑏

sin𝐵 =
𝑐

sin𝐶 = 2𝑅 =
𝑎𝑏𝑐

2Δ ,

where 𝑅 is the radius of the circumscribed circle and Δ is the area of the
triangle.
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1.5 There’s Always More Trigonometry… 1 TRIGONOMETRY

𝑎

𝐴 𝐵

𝐶

𝑐

𝑏
𝑅

Figure 5: Circumscribed Triangle

Theorem 1.2 (Law of Cosines). If a triangle has sides and angles as
above, then

𝑎2 + 𝑏2 = 𝑐2 + 2𝑎𝑏 cos𝐶. Almost looks familiar, right?

When you use these formulas, keep in mind that solving for an angle can be
tricky: if sin𝜃 = 1/2, then 𝜃 could be 30°, 150°, 390°, etc..
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2 FUNCTIONS ON THE REAL LINE

2 Functions on the Real Line

2.1 Real Numbers
The set of real numbers (R) is an uncountably infinite set, meaning I can not
even begin to exhaustively list all of its members. However, here are some of my
favorites: 3, 2/5, 4.11, 713,

√
37, 𝜋 . Real numbers include both the rationals and

irrationals.

Do you know any numbers
that aren’t real?

The real numbers can be thought of as a continuum that has no beginning
and no end: real numbers can get infinitely small and infinitely large.

More concretely, imagine you are standing on a road that goes on forever,
both in front of you and behind you. If you drop a traffic cone where you are
standing, and call it “the origin”, then any distance you walk on this road away
from the cone is a real number. If you walk forward, it is positive, and if you walk
backwards, it is negative. You can keep walking forever and reach any number
you would like, but you will never reach an “end of the road” because it doesn’t
exist.

2.2 Subsets of the Real Line
A subset is a subcollection. There are a few ways we notate subsets of R, so this
section is mostly dedicated to notation. The first two examples of a subset are
kind of stupid: the empty set ∅ (the set with no elements), and all of R are both
subsets of R.

You can define a literal subset of R by listing the elements it contains. For
example, {1, 2, 3} is the set containing 1, 2, and 3.

Intervals are—in my opinion—the most important kind of subset of R. The
following table shows the 8 kinds of intervals and the two ways we write them
(𝑎 ≤ 𝑏 are real numbers).

The set of real numbers that are… Interval Notation Set-Builder Notation

greater than 𝑎 and less than 𝑏 (𝑎, 𝑏) {𝑥 ∈ R : 𝑎 < 𝑥 < 𝑏}
greater than or equal to 𝑎 and less than 𝑏 [𝑎, 𝑏) {𝑥 ∈ R : 𝑎 ≤ 𝑥 < 𝑏}
greater than 𝑎 and less than or equal to 𝑏 (𝑎, 𝑏] {𝑥 ∈ R : 𝑎 < 𝑥 ≤ 𝑏}
greater than or equal to 𝑎 and less than or equal to 𝑏 [𝑎, 𝑏] {𝑥 ∈ R : 𝑎 ≤ 𝑥 ≤ 𝑏}
greater than 𝑎 (𝑎,∞) {𝑥 ∈ R : 𝑎 < 𝑥}
greater than or equal to 𝑎 [𝑎,∞) {𝑥 ∈ R : 𝑎 ≤ 𝑥}
less than 𝑏 (−∞, 𝑏) {𝑥 ∈ R : 𝑥 < 𝑏}
less than or equal to 𝑏 (−∞, 𝑏] {𝑥 ∈ R : 𝑥 ≤ 𝑏}

Interval notation is easy to write and read, once you get a hang of what the
different parentheses mean. The regular parentheses () are called “open” and
mean that the particular endpoint of the interval is not included. The [] brackets
are called “closed” and indicate that the endpoint is included.

Why aren’t (𝑎,∞], (𝑎,∞],
[−∞, 𝑏), and [−∞, 𝑏]
included in the table?

The set-builder notation is read as follows:

{ 𝑥︸︷︷︸
𝑥

∈︸︷︷︸
in

R︸︷︷︸
the real
numbers

:︸︷︷︸
such that

𝑎 < 𝑥 < 𝑏︸     ︷︷     ︸
𝑥 is strictly

between 𝑎 and 𝑏

}.

All of the subsets of R that you’ll want to use in this course can be written
using combinations of intervals. There are two ways to do this:
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2.3 Defining Functions 2 FUNCTIONS ON THE REAL LINE

• The union of two sets is the set that contains all of the elements in either
set and is denoted with the “cup” symbol, ∪.

• The intersection of two sets is the set that contains the elements in both
sets and is denoted with the “cap” symbol, ∩.

Here are some examples:

𝐴 𝐵 𝐴 ∪ 𝐵 𝐴 ∩ 𝐵

{1, 2, 3} {3, 4, 5} {1, 2, 3, 4, 5} {3}
{0, 2, 3} (1, 3) {0} ∪ (1, 3] {2}
(3, 4] [4, 5) (3, 5) {4}
(−∞, 5) [5,∞) (−∞,∞) = R ∅
(−3, 0) (2, 6) (−3, 0) ∪ (2, 6) ∅
(1, 5) (3, 7) (1, 7) (3, 5)
(1, 8) (3, 4) (1, 8) (3, 4)

Draw a picture of each of
these examples. Does Venn
diagram ring any bells?

2.3 Defining Functions
We will start with quite a few new (and abstract) definitions, but we will make
things concrete very soon.

If 𝐴 and 𝐵 are two sets, a function 𝑓 from 𝐴 to 𝐵 is an assignment of each
element of 𝐴 to a unique element of 𝐵. In other words, for each input 𝑎 in 𝐴,
𝑓 outputs exactly one 𝑏 in 𝐵, which we denote as 𝑓 (𝑎). The set 𝐴 is called the
domain of 𝑓 , the set 𝐵 is called the codomain of 𝑓 , and we write

𝑓 : 𝐴 → 𝐵 or 𝐴
𝑓
→ 𝐵.

Please remember that a function has three pieces of information: the domain,
the codomain, and the rule of assignment. If one of these pieces is changed, the
resulting function is different.

Is 𝑓 defined by

𝑓 (𝑥) =
{
𝑥 + 1 𝑥 > 0
𝑥2 𝑥 < 1

a function?

The range of 𝑓 is the set of all outputs of 𝑓 and is denoted 𝑓 (𝐴). The range
is always a subset of the codomain, but they are not always equal sets. The rela-
tionship between the domain, codomain, and the range are an important one:

• A function is called surjective (or onto) if its range and codomain are
the same (i.e. 𝑓 (𝐴) = 𝐵). In other words, a function is surjective if every
element of the codomain is an output of 𝑓 .

What does the word “sur”
mean in French?

• A function is called injective (or one-to-one) if each element of the range
is the output of exactly one element of the domain. In other words, if
𝑓 (𝑥1) = 𝑓 (𝑥2), then 𝑥1 = 𝑥2.

• If a function is both surjective and injective, then it is called bijective.

The figure below is a cartoon of three functions. From left to right, (1) a
surjection that is not injective, (2) a bijection, and (3) an injection that is not
surjective.

Write down the domain,
codomain, and range of each
of these functions.

12



2.4 More Domains and Ranges 2 FUNCTIONS ON THE REAL LINE

Figure 6: A Surjection, a Bijection, and an Injection

We will only use real functions, which are functions whose domain and
codomain are subsets of R. These functions take real numbers as inputs and give
real numbers as outputs, so they can be graphed on a Cartesian grid, with the
inputs on the horizontal axis and outputs on the vertical axis.

To check that a curve drawn on a plot is a function, you can use the vertical
line test: any vertical line must intersect a graph of a real function at most once

Draw a non-function that
fails the vertical line test.

(i.e. if a vertical line intersects a curve more than once, then the curve cannot be
the graph of a real function).

Some people may get sloppy and say things like

“the function 𝑓 (𝑥) = 𝑥2”

but what they really mean is

“the real function 𝑓 , defined by 𝑓 (𝑥) = 𝑥2”.

Distinguishing between a function and the formula defining it will eventually
make things easier to understand. However, from now on, I might say “function”
and mean “real-function” (use context clues).

Think of real functions that
are (1) injective but not
surjective, (2) surjective but
not injective, (3) neither
injective nor surjective, (4)
bijective.

2.4 More Domains and Ranges
All real functions can have R as their codomain, but not all real functions have
R as their domain and range. The following table lists domains and ranges for
some common functions.

Function type Domain Range
Polynomial 𝑎𝑛𝑥

𝑛 + · · · + 𝑎1𝑥 + 𝑎0 R If the highest power is odd, R. If the
highest power is even and positive, then
[𝑏,∞), and (−∞, 𝑏) otherwise (for some
𝑏).

Exponential 𝑎𝑥 R (0,∞)
Logarithm log𝑎 (𝑥) (0,∞) R

Rational 𝑝 (𝑥 )
𝑞 (𝑥 )
(𝑝 , 𝑞 are polynomials)

{𝑥 ∈ R : 𝑞(𝑥) ≠ 0} It depends

Let’s do some concrete examples:

• The function 𝑓 given by 𝑓 (𝑥) = 1
𝑥
does not have 0 in its domain, since we

can’t divide by 0. Also, 𝑓 does not have 0 in its range, since there is no real
number 𝑥 for which 1

𝑥
= 0. Therefore the domain and range of 𝑓 are both

(−∞, 0) ∪ (0,∞).

13
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• Similarly, tan does not have 2𝑛𝜋 + 𝜋/2 in its domain for any integer 𝑛,
since cos(2𝑛𝜋 +𝜋/2) = 0 (we can write the domain of tan as {𝑥 ∈ R : 𝑥 ≠

2𝑛𝜋 + 𝜋/2 for any integer 𝑛}). The range of tan is all of R.

• The function 𝑓 given by 𝑓 (𝑥) = 𝑥2 has domain R and range [0,∞).

What is the domain and
range of 𝑓 given by 𝑓 (𝑥) = 𝑛𝑛

where 𝑛 is a positive integer
(𝑛 = 1, 2, 3, . . . )?

2.5 Inverses
A function 𝑓 : 𝐴 → 𝐵 is invertible if there is some function 𝑔 : 𝐵 → 𝐴 such that
two conditions hold:

(i) for all 𝑎 in 𝐴, 𝑔(𝑓 (𝑎)) = 𝑎;

(ii) for all 𝑏 in 𝐵, 𝑓 (𝑔(𝑏)) = 𝑏.

In this case, we call 𝑔 the inverse of 𝑓 and write 𝑓 −1 = 𝑔. In other words, a
function is invertible if it is reversible as a mapping: if 𝑓 maps 𝑥 to 𝑦 := 𝑓 (𝑥),
then its inverse 𝑓 −1 must map 𝑦 to 𝑥 .

Look abck at Figure 2.3.
Which of these functions are
invertible? On any function
that is invertible, draw the
arrows for the inverse
function.

You might wonder: when is a function invertible? It turns out that we already
understand exactly what we want:

Theorem 2.1. A function is invertible exactly when it is bijective.

Lets think through this: looking back at Figure 2.3, the first function is not
invertible because it is not injective. Both 1 and 3 map to 6, but condition (i) says
that we must have 𝑓 −1 (𝑓 (1)) = 1 and 𝑓 −1 (𝑓 (3)) = 3. Since 𝑓 (1) and 𝑓 (3) are
both equal to 6, we must have that 1 = 𝑓 −1 (6) = 3, crazy talk!

The third function in Figure 2.3 is not invertible because it is not surjective.
This is a problem: since the element 4 in the codomain is not mapped to by eny
element of the domain, nomatter what wemight chose 𝑓 −1 (4) to be, 𝑓 (𝑓 −1 (4)) ≠
4, which violates condition (ii).

The condition that invertible functions must be injective is sometimes called
the horizontal line test for real functions: the graph of an invertible real func-
tion cannot intersect any horizontal line more than once (i.e. if a horizontal line
intersects the graph of a function more than once, then the function cannot be
invertible).

Draw the graph of a
non-invertible function
failing the horizontal line test.

The general strategy for finding a functions inverse is to switch the place of
𝑥 and 𝑦 in the equation, and then solve for 𝑦. The result, if it exists, will give you
an inverse for the original function (on a possibly smaller domain). Graphically,
the inverse of a function is a reflection of the function across the line 𝑦 = 𝑥 .
If a function is not bijective, we can “fix” it by making its domain or codomain
smaller. For any function there are several ways to do this, but there are some
agreed upon conventions that I’ll outline below.

• The function 𝑓 defined by 𝑓 (𝑥) = 𝑥2 has domainR, but is not invertible: the
line 𝑦 = 4 intersects the graph in two places, (−2, 4) and (2, 4). However,
we can can change both its domain and codomain to be [0,∞). To find its
inverse, solve the equation 𝑥 = 𝑦2 for 𝑦. We get 𝑦 = ±

√
𝑥 , but since we

are changing the domain of 𝑓 to only the non-negative real numbers, we
forget about the negative square root. Then the inverse of 𝑓 is given by
𝑓 −1 =

√
𝑥 , and for any non-negative 𝑥 and 𝑦 (𝑥,𝑦 ∈ [0,∞)),

𝑓 −1 (𝑓 (𝑦)) = 𝑓 (𝑥2) =
√︁
(𝑥)2) = 𝑥

and
𝑓 (𝑓 −1 (𝑦)) = 𝑓 (√𝑦) = (√𝑦)2 = 𝑦.
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• The function sin has domain R and range [−1, 1] but is periodic (meaning
its values cyclically repeat) so cannot be invertible without an adjustment
to its domain. The smaller domain we choose is [−𝜋/2, 𝜋/2] and the mod-
ified codomain is its range, [−1, 1]. The inverse of sin is called arcsin or
sin−1 and has domain [−1, 1] and range [−𝜋/2, 𝜋/2].

Look up the modified
domains and codomains for
the other inverse trig
functions.

• The function 𝑓 (𝑥) = 𝑒𝑥 has domain R and range (0,∞). If we shrink the
codomain R to be equal to the range, then its inverse is given by 𝑓 −1 (𝑥) =
ln(𝑥) and domain (0,∞) and range R.

15



3 LIMITS

Part II

Limits and Continuity
3 Limits
Limits are important in calculus since we need very small quantities to effectively
study change. Yeah, that’s pretty vague, but hopefully it’ll clear up in a few pages.

We study limits for many reasons. One of them is to study functions at points
where they are only “close” to being defined. For example, the function 𝑓 given
by 𝑓 (𝑥) = 𝑥 (𝑥+1)

𝑥
is not defined at 0, but looks like the line 𝑥 + 1 everywhere else.

3.1 Intuitive Limits
The intuitive idea of a limit is to examine what the output of a function does as
the input moves close to a specific value. Since the functions we care about take
real numbers as inputs, there are two ways you can approach a number on the
real line (from the left and from the right). We will talk about left- and right-sided
limits.

Before getting into the actual definition, we’ll start intuitively. If a function is
“continuous”1 and is defined at 𝑎, then as 𝑥 moves closer to 𝑎, 𝑓 (𝑥) moves closer
to 𝑓 (𝑎), so the limit of 𝑓 as 𝑥 approaches 𝑎 is 𝑓 (𝑎).

Let’s get a little more general: suppose a function 𝑓 is defined on open inter-
vals on either side of 𝑎.

If 𝑓 is defined on an interval to the left of 𝑎 and the values of 𝑓 (𝑥) approach
𝐿 as 𝑥 approaches 𝑎 from the left, we say that the “left-sided limit of 𝑓 as 𝑥
approaches 𝑎 is 𝐿” and we write

lim
𝑥→𝑎−

𝑓 (𝑥) = 𝐿.

If 𝑓 is defined on an interval to the right of 𝑎 and the values of 𝑓 (𝑥) approach
𝐿 as 𝑥 approaches 𝑎 from the right, we say that the right-sided limit of 𝑓 as 𝑥
approaches 𝑎 is 𝐿” and we write

lim
𝑥→𝑎+

𝑓 (𝑥) = 𝐿.

If the right and left sided limits match, then we say that the limit of 𝑓 as 𝑥

approaches 𝑎 is 𝐿 and write

lim
𝑥→𝑎

𝑓 (𝑥) = 𝐿.

Note: 𝑓 need not be defined at 𝑎 to find the limit of 𝑓 as 𝑥 approaches 𝑎.

One can compute 𝑓 (𝑥) for values of 𝑥 that get closer and closer to either side
of 𝑎. If the values approach 𝐿, then you have good reason to believe that 𝐿 is the
(right- and/or left-sided) limit.

1I put this word in quotes because I haven’t defined it yet, but you should have an intuitive idea
of what this means: being able to draw it without lifting your pencil. Just wait for a few pages.
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3.2 Infinite Limits 3 LIMITS

𝑥 𝑓 (𝑥)
𝑎 − 0.1 𝑓 (𝑎 − 0.1)
𝑎 − 0.01 𝑓 (𝑎 − 0.01)
𝑎 − 0.001 𝑓 (𝑎 − 0.001)
𝑎 − 0.0001 𝑓 (𝑎 − 0.0001)
𝑎 + 0.0001 𝑓 (𝑎 + 0.0001)
𝑎 + 0.001 𝑓 (𝑎 + 0.001)
𝑎 + 0.01 𝑓 (𝑎 + 0.01)
𝑎 + 0.1 𝑓 (𝑎 + 0.1)

Such calculations, however, cannot prove that a function limits to a specific value.

3.2 Infinite Limits
We can extend the idea of limits outside of the real numbers to include positive
and negative infinity in place of both 𝑎 and 𝐿.

• If 𝑓 (𝑥) grows without bound as 𝑥 approaches 𝑎 from the left, then we write

lim
𝑥→𝑎−

𝑓 (𝑥) = ∞.

(Similarly for 𝑥 approaching 𝑎 from the right, and also if 𝑓 (𝑥) becomes
increasingly negative without bound).

• We denote the value (if such a value exists) that 𝑓 (𝑥) approaches as 𝑥 ap-
proaches∞ as

lim
𝑥→∞

𝑓 (𝑥).

(Similarly if 𝑥 approaches −∞).

3.3 Optional: The 𝜀 − 𝛿 Definition
You may be dissatisfied with the intuitive approach to limits, so we can make the
definition more rigorous. The main idea that needs to be captured by a formal
definition is arbitrary precision. That is, we need a way to say formally that “𝑓 (𝑥)
approaches 𝐿 as 𝑥 approaches 𝑎.”

By controlling the input 𝑥 , we must be able to make the distance |𝑓 (𝑥) − 𝐿 |
between the output 𝑓 (𝑥) and 𝐿 to be as small as we want (“arbitrarily small”). In
other words, if 𝜀 > 0 is any small positive number, we must be able to ensure (by
controlling 𝑥 ) that |𝑓 (𝑥) − 𝐿 | < 𝜀. To control 𝑥 , we can make the distance |𝑥 − 𝑎 |
between 𝑥 and 𝑎 smaller than some positive number 𝛿 > 0 (that may depend on
𝜀).

Now we’re ready for the real “𝜀 −𝛿” definition of a limit: we say that 𝐿 is the
limit of 𝑓 as 𝑥 approaches 𝑎 if

for all 𝜀 > 0, there is some 𝛿 > 0, such that |𝑥 − 𝑎 | < 𝛿 =⇒ |𝑓 (𝑥) − 𝐿 | < 𝜀.

Read that last line a few times, because statements with multiple quantifiers
can be tricky!

Figure 7 is the classic picture you should try to commit to memory, or at very
least, thoroughly understand. Here is how you should think about it:

1. Let 𝜀 define an interval around 𝑓 (𝑎) on the 𝑦-axis.

2. Then trace the interval right until it hits the graph of the function (solid
gray line), and wherever the solid gray line meets the function, draw the
solid squiggly line down to meet the 𝑥-axis.
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𝜀

𝜀

𝛿 𝛿

𝑎

𝑓 (𝑎)

𝜀

𝜀

𝑓 (𝑎)

𝛿 𝛿
𝑎

𝛿 𝛿
𝑎

𝜀

𝜀
𝑓 (𝑎)

𝑓 (𝑎)

𝑎

𝜀

𝜀

𝛿

Figure 7: A cartoon of the 𝜀 − 𝛿 definition of a limit

3. Choose 𝛿 small enough so that when the reverse action is done (trace the 𝛿
interval up with the dotted squiggly line to the function and then left with
the dashed line to the𝑦-axis), the resulting interval is contained within the
𝜀 interval.

While the function graphed in the top two plots has a limit at 𝑎, the function
that is graphed in the bottom two plots does not. For this function the first value
of 𝜀 (graph on the left) is not small enough to detect the jump discontinuity, but
on the second (graph on the right), the 𝜀 given is so small that no value of 𝛿 can
be big enough to ignore jump.

Itmay be helpful to think about the definition of a limit as a game/conversation
between two people, Alex and Blake. Alex is trying to claim that the limit of 𝑓
as 𝑥 → 𝑎 is L, and Blake is doing their best job to contest it. Here is how their
conversation might go:

A: I think the limit of 𝑓 (𝑥) = 3𝑥 + 1 as 𝑥 approaches 2 is 7.

B: Well if you think so, can you ensure that |𝑓 (𝑥) − 7| < 1
10?

A: Yes! If we take 𝑥 such that |𝑥 − 2| < 1/30, then

|𝑓 (𝑥) − 7| = |3𝑥 + 1 − 7| = |3𝑥 − 6| = 3|𝑥 − 2| < 3(1/30) = 1/10.

In this example, 𝜀 = 1/10 and 𝛿 = 1/30. However, if we want to really prove that
the limit is 7, we let 𝜖 > 0 be arbitrary, and take 𝛿 = 𝜀/3. Then for any 𝑥 such
that |𝑥 − 2| < 𝛿 ,

|𝑓 (𝑥) − 7| = |3𝑥 + 1 − 7| = |3𝑥 − 6| = 3|𝑥 − 2| < 3(𝜀/3) = 𝜀.
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For simple examples, it is pretty easy to work backwards and figure out what
𝛿 should be, but for more complicated functions 𝑓 , it can be more difficult. Here
is a Desmos example that shows dynamically how 𝛿 can depend on 𝜀.

3.4 Limit Laws
We still need a more sophisticated way to figure out what the limit of a function
is at a certain point. There are several limit laws that make computing limits
easier. We also have two basic facts that should be obvious: for any 𝑎, 𝑏 ∈ R,

lim
𝑥→𝑎

𝑏 = 𝑏 and lim
𝑥→𝑎

𝑥 = 𝑎.

Together with the following laws, you’ll be able to evaluate the limits of many
functions. Suppose lim

𝑥→𝑎
𝑓 (𝑥) = 𝐿 and lim

𝑥→𝑎
𝑔(𝑥) = 𝑀 , let 𝑐 be a constant, and let 𝑛

be a positive integer.

Sum law lim
𝑥→𝑎

(𝑓 (𝑥) + 𝑔(𝑥)) = lim
𝑥→𝑎

𝑓 (𝑥) + lim
𝑥→𝑎

𝑔(𝑥) = 𝐿 +𝑀

Difference law lim
𝑥→𝑎

(𝑓 (𝑥) − 𝑔(𝑥)) = lim
𝑥→𝑎

𝑓 (𝑥) − lim
𝑥→𝑎

𝑔(𝑥) = 𝐿 −𝑀

Constant Multiple law lim
𝑥→𝑎

𝑐 𝑓 (𝑥) = 𝑐 · lim
𝑥→𝑎

𝑓 (𝑥) = 𝑐𝐿

Product law lim
𝑥→𝑎

(𝑓 (𝑥) · 𝑔(𝑥)) = lim
𝑥→𝑎

𝑓 (𝑥) · lim
𝑥→𝑎

𝑔(𝑥) = 𝐿 ·𝑀

Quotient law lim
𝑥→𝑎

𝑓 (𝑥)
𝑔(𝑥) =

lim
𝑥→𝑎

𝑓 (𝑥)

lim
𝑥→𝑎

𝑔(𝑥) =
𝐿

𝑀
for𝑀 ≠ 0

Power law lim
𝑥→𝑎

(𝑓 (𝑥))𝑛 =

(
lim
𝑥→𝑎

𝑓 (𝑥)
)𝑛

= 𝐿𝑛

Root law lim
𝑥→𝑎

𝑛
√︁
𝑓 (𝑥) = 𝑛

√︃
lim
𝑥→𝑎

𝑓 (𝑥) = 𝑛
√
𝐿 for all 𝐿 if 𝑛 is odd,

and for 𝐿 ≥ 0 if 𝑛 is even and 𝑓 (𝑥) ≥ 0.

3.5 Limit “Tricks” and Key Examples
There are some other tricks that will help you evaluate limits. Try these things if
you’re not sure what else to do; they might be helpful if you end up in a situation
where you are trying to divide 0/0.

• Simplify. Perhaps the function is rational, and has common factor in its
numerator and denominator. By “canceling” the term, the resulting func-
tion is not the same: the original function has a hole at the point where
the factored term is 0. For example, 𝑓 (𝑥) =

𝑥 (𝑥−1)
(𝑥−1) has a hole at 𝑥 = 1,

but everywhere else is the line 𝑦 = 𝑥 . However, this cancellation does not
change the value of the limit.

• Multiply by the conjugate of the denominator or the numerator of a ratio-
nal function (the conjugate of a binomial 𝑎 + 𝑏 is 𝑎 − 𝑏).

• lim
𝑥→0

sin(𝑥)
𝑥

= 1.

• lim
𝑥→0

cos(𝑥) − 1
𝑥

= 0.
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• lim
𝑥→∞

(
1 + 1

𝑥

)𝑥
= 𝑒 .

• Use the Squeeze Theorem:

Theorem 3.1 (SqueezeTheorem). Let 𝑓 , 𝑔, andℎ be functions with
𝑔(𝑥) ≤ 𝑓 (𝑥) ≤ ℎ(𝑥) for all 𝑥 in some interval around 𝑎 (except
possibly at 𝑎). If

lim
𝑥→𝑎

𝑔(𝑥) = 𝐿 = lim
𝑥→𝑎

ℎ(𝑥),

then
lim
𝑥→𝑎

𝑓 (𝑥) = 𝐿

as well.

The most common application of squeeze theorem is squeezing

−1 ≤ sin𝜃 ≤ 1.
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4 CONTINUITY

4 Continuity

4.1 Definitions
A function 𝑓 is continuous at 𝑎 if three conditions are satisfied:

(a) 𝑓 is defined at 𝑎 (i.e. 𝑓 (𝑎) makes sense)

(b) lim
𝑥→𝑎+

𝑓 (𝑥) = 𝑓 (𝑎)

(c) lim
𝑥→𝑎−

𝑓 (𝑥) = 𝑓 (𝑎)

If𝑈 is a subset of R and 𝑓 is continuous at every point in𝑈 , then we say that
𝑓 is continuous on𝑈 .

In the definition above, if any of (a), (b), or (c) are not true (or one of the
sided limits doesn’t exist), then 𝑓 is discontinuous at 𝑎. Here are three types of
discontinuities that you may encounter: if 𝑓 is discontinuous at 𝑎, then

1. 𝑓 has a removable discontinuity at 𝑎 if lim
𝑥→𝑎

𝑓 (𝑥) exists and is a real
number.

2. 𝑓 has a jump discontinuity at 𝑎 if lim
𝑥→𝑎−

𝑓 (𝑥) and lim
𝑥→𝑎+

𝑓 (𝑥) both exist
and are real numbers, but are different.

3. 𝑓 has an infinite discontinuity at 𝑎 if lim
𝑥→𝑎−

𝑓 (𝑥) = ±∞ or lim
𝑥→𝑎+

𝑓 (𝑥) =

±∞.
Draw a picture of each kind
of discontinuity.

4.2 Using Continuity
The following types of functions are continuous at every point in their domains:

• polynomials

• rational functions

• trig and inverse trig functions

• exponential functions

• logarithms

It is a fact (easily verifiable from the definition of continuity and the limit
laws) that the sum, product, and composition of continuous functions is contin-
uous. Therefore, if you want to take a limit of any continuous function 𝑓 at a
point 𝑎 in its domain, the limit is equal to 𝑓 (𝑎) by definition of continuity.

Here’s another limit law, now that you know about continuous functions:

Theorem 4.1 (Composite Function Theorem). If 𝑓 (𝑥) is continuous at 𝐿
and lim

𝑥→𝑎
𝑔(𝑥) = 𝐿, then

lim
𝑥→𝑎

𝑓 (𝑔(𝑥)) = 𝑓

(
lim
𝑥→𝑎

𝑔(𝑥)
)
= 𝑓 (𝐿).

To finish off the section, a very useful theorem:
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Theorem 4.2 (The Intermediate Value Theorem). Let 𝑓 be continuous
over a closed, bounded interval [𝑎, 𝑏]. If 𝑧 is any real number between
𝑓 (𝑎) and 𝑓 (𝑏), then there is a number 𝑐 in [𝑎, 𝑏] satisfying 𝑓 (𝑐) = 𝑧.

𝑎 𝑏

𝑓 (𝑎)

𝑓 (𝑏)

𝑧

𝑐

Figure 8: A Cartoon of the Intermediate Value Theorem

Phrased properly, the Intermediate Value Theorem is very intuitive. If you
imagine the 𝑥-axis is time and the 𝑦-axis is position, the theorem says if you
start at location 𝑓 (𝑎) and end at location 𝑓 (𝑏), then for any location 𝑧 between
𝑓 (𝑎) and 𝑓 (𝑏), there must have been some time that you were at 𝑧 (as long as
you can’t teleport!).
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Part III

Derivatives and Applications
5 The Derivative

5.1 The Limit Definition

Recall that a secant line is a line
between two points on the graph of a
function. If 𝑓 is a function and (𝑎, 𝑓 (𝑎))
and (𝑏, 𝑓 (𝑏)) are different points on the
function, then the secant line that they
determine has equation

𝑦 = 𝑓 (𝑎) + 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎

(𝑥 − 𝑎).

We can assume 𝑏 > 𝑎 and write 𝑏 = 𝑎 +
ℎ for someℎ > 0. Then the equation for
the secant line through (𝑎, 𝑓 (𝑎)) and
(𝑏, 𝑓 (𝑏)) = (𝑎 + ℎ, 𝑓 (𝑎 + ℎ)) is

𝑦 = 𝑓 (𝑎) + 𝑓 (𝑎 + ℎ) − 𝑓 (𝑎)
ℎ

(𝑥 − 𝑎).

Now we’re going to use limits to
move one point (𝑏, 𝑓 (𝑏)) closer to the
other (𝑎, 𝑓 (𝑎)), and see what happens
to the secant line. Since the secant line
passes through the point (𝑎, 𝑓 (𝑎)), we
only have to track what happens to the
slope. As 𝑏 moves to 𝑎, the value of ℎ
goes to 0, so the slope of the secant line
approaches

lim
ℎ→0

𝑓 (𝑎 + ℎ) − 𝑓 (𝑎)
ℎ

.

We’ll denote this quantity 𝑓 ′ (𝑎), and
call this the derivative of 𝑓 at 𝑎 (if this
limit exists). The line through the point
(𝑎, 𝑓 (𝑎)) with slope 𝑓 ′ (𝑎) is called the
tangent line of 𝑓 at 𝑎 and has equa-
tion

𝑦 = 𝑓 (𝑎) + 𝑓 ′ (𝑎) (𝑥 − 𝑎).

𝑎
𝑏 = 𝑎 + ℎ

ℎ

𝑓 (𝑎)

𝑓 (𝑏)

𝑎

. . .

You’ll notice that the tangent line captures some local information about 𝑓 at
𝑎. In other words, it is a good approximation of 𝑓 at 𝑎; that is, 𝑓 and its tangent
line are “similar” at 𝑎. Intuitively, you should think about the tangent line at 𝑎 to
be the line that “hugs 𝑓 the best at 𝑎.”

Note that this definition of the derivative only makes sense if 𝑓 is defined
on an open interval containing 𝑎. We can view the derivative as a function, and
write [𝑓 (𝑥)]′ or 𝑓 ′ (𝑥). The derivative of 𝑓 ′ (𝑥) is called the second derivative
and is denoted 𝑓 ′′ (𝑥). In general, the 𝑛th derivative 𝑓 (𝑛) (𝑥) is defined to be the
derivative of 𝑓 (𝑛−1) (𝑥).
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5.2 The Two Part “Program” for Finding Derivatives
So now we have a goal: find derivatives of functions. The problem is that the
limit definition is difficult to use (that pesky ℎ → 0 in the denominator). So
instead, we will do the following two steps (let 𝑎 be a real number and 𝑓 and 𝑔
be functions):

1. rules to break functions up and reassemble

The Scalar Multiple Rule [𝑎𝑓 ]′ = 𝑎𝑓 ′.

The Sum Rule [𝑓 + 𝑔]′ = 𝑓 ′ + 𝑔′

The Product Rule [𝑓 𝑔]′ = 𝑓 ′𝑔 + 𝑓 𝑔′

TheQuotient Rule
[
𝑓

𝑔

] ′
=

𝑓 ′𝑔−𝑓 𝑔′
𝑔2

The Chain Rule [𝑓 (𝑔(𝑥))]′ = 𝑓 ′ (𝑔(𝑥))𝑔′ (𝑥)

The Inverse Rule [𝑓 −1 (𝑥)]′ = 1
𝑓 ′ (𝑓 −1 (𝑥 ) )

2. find derivatives of “basic” functions:

Constant Rule [𝑎]′ = 0

Power Rule [𝑥𝑎]′ = 𝑎𝑥𝑎−1

Trig Rules [sin(𝑥)]′ = cos(𝑥)

[cos(𝑥)]′ = − sin(𝑥)

Exponential Rules [𝑎𝑥 ]′ = ln(𝑎)𝑎𝑥

Logarithmic Rules [log𝑎 (𝑥)]′ = 1
𝑥 ln(𝑎)

Most of the time, you will be able to find the derivatives using a combination
of these rules. For instance, the derivatives of the other 4 trig functions can be
found using the quotient rule and the derivatives of sin and cos:

[tan(𝑥)]′ = sec2 (𝑥) [sec(𝑥)]′ = sec(𝑥) tan(𝑥)

[cot(𝑥)]′ = − csc2 (𝑥) [csc(𝑥)]′ = − csc(𝑥) cot(𝑥) Try to find the pattern with
these four derivatives.

5.3 Implicit Differentiation
We’ll refer to the set of points that satisfy an equation of two variables as a curve
in the plane. Some examples youmight have seen before are circles and ellipses.
The circle with center (ℎ, 𝑘) and radius 𝑟 is the set of points (𝑥,𝑦) in the plane
that satisfy the equation

(𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟 2 .

Look up the similar equation
for an ellipse and write it
down here.

In general, curves are not functions (theymight not pass the vertical line test),
but they can still have tangent lines, so we should be able to describe their slope
at a point. We do this by “zooming in” on a point of the curve, and forgetting
about the other parts of the curve. Now (locally), it looks like a function, so
we can treat the 𝑦 variable as a function of 𝑥 . This process is called “implicit”
differentiation, and consists of two steps:
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1. differentiate both sides of the equation (keeping in mind that since 𝑦 is a
function of 𝑥 , the derivative of 𝑓 (𝑦) is 𝑓 ′ (𝑦) · 𝑦′ by the chain rule).

2. solve for 𝑦′.

Other notation is sometimes used: if 𝑦 = 𝑓 (𝑥), 𝑑𝑦
𝑑𝑥

= 𝑑
𝑑𝑥

[𝑓 (𝑥)] is the deriva-
tive of 𝑓 , and 𝑑𝑛𝑦

𝑑𝑥𝑛
= 𝑑𝑛

𝑑𝑥𝑛
[𝑓 (𝑥)] is the 𝑛th derivative of 𝑓 .

When you solve for 𝑦′, it is possible that the expression will consist of both
𝑦 and 𝑥 variables. That is because the formula for 𝑦′ is not a function of just 𝑥 , it
is a function of both 𝑥 and 𝑦!

Let’s do an example:

• The curve of points satisfying the equation𝑦3 = 𝑥2−𝑥𝑦−1 is not a function,
since it does not pass the vertical line test: both (−1,−1) and (−1, 1) are
solutions. However, we can still find the derivative at each point on this
curve! Start by taking the (𝑥 ) derivative of both sides.
On the left, the 𝑥 derivative of 𝑦3 is 3𝑦2𝑦′, by the power rule (and the chain
rule). The derivative of 𝑥2 is 2𝑥 , the derivative of 𝑥𝑦 is𝑦+𝑥𝑦′ by the product
rule (and chain rule), and the derivative of 1 is 0, of course. Comparing the
derivatives of each side of the equation, we get

3𝑦2𝑦′ = 2𝑥 − (𝑦 + 𝑥𝑦′),

so solving for 𝑦′, we have

𝑦′ =
2𝑥 − 𝑦

3𝑦2 + 𝑥
.

At (−1, 1), 𝑦′ = −3
2 , and at (−1,−1), 𝑦′ = −1

2 . The tangent line to the curve
at the point (−1, 1) is 𝑦 = −3

2 (𝑥 + 1) + 1

5.4 Parametric Curves
A parametric curve is a curve defined by two coordinate functions (𝑥 (𝑡), 𝑦 (𝑡)).
You should think of (𝑥,𝑦) as the position of some particle and the particle’s co-
ordinates 𝑥 (𝑡) and 𝑦 (𝑡) are functions of time.

To find the slope (AKA derivative) of a parametric curve at time 𝑡 , simply
compute

𝑑𝑦

𝑑𝑥
=
𝑦′ (𝑡)
𝑥 ′ (𝑡) .

An example:

• The derivative of the curve (𝑥,𝑦) = (sin(𝑡), 𝑡2) is

𝑦′ (𝑡)
𝑥 ′ (𝑡) =

2𝑡
cos(𝑡) .

The equation of the tangent line at 𝑡 = 𝜋 is 𝑦 = 𝜋2 + 2𝜋
−1 (𝑥 − 0).

5.5 Logarithmic Differentiation
Sometimes you will be faced with a function whose formula includes an expres-
sion involving 𝑥 raised to a power that also involves 𝑥 . Finding the derivative of
such a function has a specific procedure:
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Strategy: Logarithmic Differentiation

Suppose 𝑦 = 𝑓 (𝑥)𝑔 (𝑥 ) and we want to find 𝑦′. First apply the ln function
to both sides of the equation and use the log property ln(𝑎𝑏) = 𝑏 ln(𝑎):

ln(𝑦) = ln(𝑓 (𝑥)𝑔 (𝑥 ) ) = 𝑔(𝑥) ln(𝑓 (𝑥)) .

Then implicit differentiation yields

1
𝑦
𝑦′ = 𝑔′ (𝑥) ln(𝑓 (𝑥)) + 𝑔(𝑥) 𝑓

′ (𝑥)
𝑓 (𝑥) ,

and solving for 𝑦′ and substituting 𝑦 = 𝑓 (𝑥)𝑔 (𝑥 ) we get

𝑦′ = 𝑓 (𝑥)𝑔 (𝑥 )
(
𝑔′ (𝑥) ln(𝑓 (𝑥)) + 𝑔(𝑥) 𝑓

′ (𝑥)
𝑓 (𝑥)

)
.

Here are some examples:

• [𝑥𝑥 ]′ = 𝑥𝑥 (ln(𝑥) + 1) = ln(𝑥𝑥𝑥 ) + 𝑥𝑥 . (Here 𝑓 (𝑥) = 𝑔(𝑥) = 𝑥 ).

• [sin(𝑥)𝑥 ]′ = sin(𝑥)𝑥 (ln(sin(𝑥)) + 𝑥 cot(𝑥)). (Here 𝑓 (𝑥) = sin(𝑥) and
𝑔(𝑥) = 𝑥 ).

Work these examples out.

I don’t recommend that you memorize the formula for [𝑓 (𝑥)𝑔 (𝑥 ) ]′. Instead,
remember the procedure and re-create when you need it.

An alternate method for logarithmic differentiation is to transform 𝑓 (𝑥)𝑔 (𝑥 )
into a form more easily differentiable by first taking the logarithm and then ex-
ponentiating:

𝑓 (𝑥)𝑔 (𝑥 ) = 𝑒 ln( 𝑓 (𝑥 )𝑔 (𝑥 ) ) = 𝑒𝑔 (𝑥 ) ln(𝑓 (𝑥 ) ) .

Take the derivative of
𝑒𝑔 (𝑥 ) ln(𝑓 (𝑥 ) ) and see that it
matches the expression for 𝑦′
in the strategy box.

5.6 Using The Inverse Rule
When we want to find the derivative of an inverse of a function 𝑓 , the inverse
rule tells us that

[𝑓 −1 (𝑥)]′ = 1
𝑓 ′ (𝑓 −1 (𝑥)) ,

but how is this helpful? It is actually very easy to see why this rule is true:

𝑓 (𝑓 −1 (𝑥)) = 𝑥 (definition of inverse)
=⇒ 𝑓 ′ (𝑓 −1 (𝑥)) [𝑓 −1 (𝑥)]′ = 1 (chain rule)

=⇒ [𝑓 −1 (𝑥)]′ = 1
𝑓 ′ (𝑦) (solve for [𝑓 −1 (𝑥)]′)

=⇒ [𝑓 −1 (𝑥)]′ = 1
𝑓 ′ (𝑓 −1 (𝑥)) (substitute)

Let’s use this rule to find the derivative of inverse trig functions:

• The rule says that [sin−1 (𝑥)]′ = 1
cos(sin−1 (𝑥 ) ) , but we should be able to

simplify this expression using the unit circle.
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sin−1 (𝑥)

cos
(
sin−1 (𝑥)

)

1
𝑥

Argue this using the
Pythagorean identitiy
(sin2 𝜃 + cos2 𝜃 = 1) instead.

if a (non-right) angle of a right triangle (with hypotenuse 1) is sin−1 (𝑥), the
leg opposite sin−1 (𝑥) has length 𝑥 . Then cos(sin−1 (𝑥)) is the length of the
other leg of the triangle, so cos(sin−1 (𝑥)) =

√
1 − 𝑥2 by the Pythagorean

theorem. Therefore,

[sin−1 (𝑥)]′ = 1
cos(sin−1 (𝑥))

=
1

√
1 − 𝑥2

.

• The derivatives of the other inverse trig functions are

Figure these equations out by
yourself using the same
method as for sin−1. Hint:
refer to Figure 2

[cos−1 (𝑥)]′ = −1
√
1 − 𝑥2

[csc−1 (𝑥)]′ = −1
|𝑥 |

√
𝑥2 − 1

[sec−1 (𝑥)]′ = 1
|𝑥 |

√
𝑥2 − 1

[tan−1 (𝑥)]′ = 1
1 + 𝑥2

[cot−1 (𝑥)]′ = −1
1 + 𝑥2
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6 Applications of Derivatives

6.1 Linear Approximation
This first application of derivatives is nothing too new! We first described the
tangent line of a function 𝑓 as the line that “hugs 𝑓 the best at 𝑎” and now we
are going to take of advantage of that fact.

The main idea is that if we have a function 𝑓 and we know 𝑓 (𝑎) and 𝑓 ′ (𝑎) for
some 𝑎, then we can use the tangent line of 𝑓 at 𝑎 to estimate values of a function
near 𝑎. That is, if 𝑎 ≈ 𝑏, then

𝑓 (𝑏) ≈ 𝑓 (𝑎) + 𝑓 ′ (𝑎) (𝑏 − 𝑎).

The right side of this approximation is exactly the tangent line of 𝑓 at𝑎, evaluated

When is this approximation
an overestimate?
Underestimate?

at 𝑏.

𝑎

𝑓 (𝑎)

𝑏

𝑓 (𝑏)

≈ 𝑓 (𝑏)

Figure 9: Linear Approximation

Let’s pretend we don’t have a calculator, and try to estimate
√
4.1. In this case

𝑓 (𝑥) =
√
𝑥 , and we should set 𝑎 = 4, since 4.1 ≈ 4 and we can figure out 𝑓 (4)

and 𝑓 ′ (4). By the power rule, 𝑓 ′ (𝑥) = 1
2𝑥

−1/2, so 𝑓 ′ (4) = 1
2 (4

−1/2) = 1
4 , and of

course 𝑓 (4) =
√
4 = 2. Using the formula above,

√
4.1 = 𝑓 (4.1) ≈ 𝑓 (4) + 𝑓 ′ (4) (4.1 − 4) = 2 + 1

4 (0.1) = 2.025.

If we check a calculator for a better approximation, we find that
√
4.1 ≈ 2.02484567313,

so we weren’t that far off!

Estimate
√
3.9 and compare to

the actual value.

6.2 L’Hôpital’s Rule
L’Hôpital’s Rule is a way to easily tackle some of those limit problems that were
in an indeterminate form, namely 0

0 and
∞
∞ .
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Theorem 6.1. If lim
𝑥→𝑎

𝑓 (𝑥) = lim
𝑥→𝑎

𝑔(𝑥) = 0 or∞, then

lim
𝑥→𝑎

𝑓 (𝑥)
𝑔(𝑥) = lim

𝑥→𝑎

𝑓 ′ (𝑥)
𝑔′ (𝑥) ,

as long as all of these limits are defined.

What this means for you: if you are trying to take the limit of a rational
function and after plugging in you get 0

0 or ∞
∞ , then take the derivative of the

numerator and the denominator, and try to evaluate the limit again.
It is possible that one use of L’Hôptial’s rule won’t be enough: you may have

to use it multiple times. Here are some examples:

• lim
𝑥→0

sin(𝑥)
𝑥

LH
= lim

𝑥→0

cos(𝑥)
1 = 1.

• lim
𝑥→∞

3𝑥2 + 1
4𝑥2 + 3𝑥

LH
= lim

𝑥→∞
6𝑥

8𝑥 + 3
LH
= lim

𝑥→∞
6
8 =

3
4 .

Sometimes you will encounter an indeterminant form that is not 0
0 or

∞
∞ , and

in these cases, we can transform it into the form 0
0 or

∞
∞ and then use L’Hôptial’s

rule. Here are some illustriative examples:

• lim
𝑥→1

1
𝑥 − 1 − 1

ln(𝑥) = lim
𝑥→1

ln (𝑥) − 𝑥 + 1
(𝑥 − 1) ln (𝑥)

LH
= lim

𝑥→1

1/𝑥 − 1
ln (𝑥) + 1 − 1

𝑥
LH
= lim𝑥→1

−1/𝑥2

1/𝑥+1/𝑥2 = − 1
2 .

• lim
𝑥→0+

𝑥 ln(𝑥) = lim
𝑥→0+

ln(𝑥)
1/𝑥

LH
= lim

𝑥→0+
1/𝑥

−1/𝑥2 = lim
𝑥→0+

−𝑥 = 0.

• lim
𝑥→0+

𝑥𝑥 = lim
𝑥→0+

𝑒 ln(𝑥
𝑥 ) = 𝑒

lim
𝑥→0+

ln(𝑥𝑥 )
= 𝑒

lim
𝑥→0+

𝑥 ln(𝑥)
= 𝑒0 = 1.

Label each of these examples
with original and
trasnsformed type of
indeterminant forms they
demonstrate.

6.3 Kinematics
Kinematics is the study of motion. In this section, we’ll concern ourselves with
only one basic situation: an object moving in a straight path (only forwards and
backwards).

Suppose the position of an object at time 𝑡 is given by 𝑥 (𝑡). The object’s
velocity at time 𝑡 is given by

𝑣 (𝑡) = 𝑥 ′ (𝑡)

since velocity is the rate at which position is changing. Similarly, the object’s
acceleration at time 𝑡 is given by

𝑎(𝑡) = 𝑣 ′ (𝑡) = 𝑥 ′′ (𝑡),

since acceleration is the rate at which velocity is changing.
How do we interpret these quantities? One way is to think about speed,

which is the absolute value of velocity. In other words, if you are moving back-
ward at 2 m/s, then your velocity is −2 m/s and you speed is 2 m/s, but if you are
moving forward at the speed 2 m/s, then your speed and velocity are both 2 m/s.

What is an example of a
position function whose
velocity is positive?
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6.4 Related Rates
As we saw in kinematics, the time-derivative of a function tells us the rate at
which the function is changing. So, if we have two related quantities 𝐴 and 𝐵

that are changing over time, we can find the rate at which 𝐴 is changing at time
𝑇 if we know the rate at which 𝐵 is changing at time 𝑇 .

Note: sometimes the following different notations are used for the time deriva-
tive of 𝐴 at time 𝑇 :

𝐴′ (𝑇 ) =
𝑑𝐴

𝑑𝑡

����
𝑡=𝑇

= ¤𝐴(𝑇 )

Here is the general problem-solving strategy:

Strategy: Related Rates

1. Draw a picture.

2. Label the relevant quantities (including 𝐴 and 𝐵).

3. Find an equation that relates 𝐴 and 𝐵 (and nothing else).

4. Implicitly differentiate the equation with respect to time 𝑡 . (Remember
that 𝐴 and 𝐵 are functions of 𝑡 , so use the chain rule!)

5. Solve for 𝐴′ (𝑡) in terms of 𝐴(𝑡), 𝐵(𝑡), and 𝐵′ (𝑡)

6. Plug in 𝑡 = 𝑇 .

6.5 Qualities of Graphs
In this section we will understand how derivatives tell us qualitative information
about of graphs of functions. To start,

𝑓 is
{
increasing at 𝑥 if 𝑓 ′ (𝑥) > 0
decreasing at 𝑥 if 𝑓 ′ (𝑥) < 0

and

𝑓 is
{
concave up at 𝑥 if 𝑓 ′′ (𝑥) > 0
concave down at 𝑥 if 𝑓 ′′ (𝑥) < 0.

You already know what increasing and decreasingmean. The graph of a func-
tion that is concave up at 𝑥 looks like a bowl near 𝑥 , and the graph of a function
that is concave down at 𝑥 looks like a hill near 𝑥 . Points on a graph where con-
cavity changes (from up to down, or down to up) are called inflection points.

Draw a sketch of an inflection
point.

Theorem 6.2 (TheMean ValueTheorem). If 𝑓 is continuous on [𝑎, 𝑏] and
differentiable on (𝑎, 𝑏), then there is some 𝑐 ∈ (𝑎, 𝑏) for which 𝑓 ′ (𝑐) =
𝑓 (𝑏 )−𝑓 (𝑎)

𝑏−𝑎 .

In plain English, the mean value theorem says that the average value of the
slope on an interval is always attained on that interval.
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6.6 Extremal Points
A function 𝑓 has a

local

{
maximum
minimum

at 𝑎 if
{
𝑓 (𝑎) ≥ 𝑓 (𝑥)
𝑓 (𝑎) ≤ 𝑓 (𝑥)

for all 𝑥 in some interval 𝐼 ∋ 𝑎;

global

{
maximum
minimum

at 𝑎 if
{
𝑓 (𝑎) ≥ 𝑓 (𝑥)
𝑓 (𝑎) ≤ 𝑓 (𝑥)

for all 𝑥 in the domain of 𝑓 .

Any such point is called an extremal point of 𝑓 .
Global maximum values are unique, but points at which they occur might not

be. For example, sin(𝑥) has global maximum value of 1, even though this value
occurs infinitely many times on the domain of sin(𝑥). All global extremal points
are local extremal points.

The point 𝑎 is called a critical point of 𝑓 if 𝑓 ′ (𝑎) = 0 or 𝑓 is not differentiable
at 𝑎 (𝑓 ′ (𝑎) doesn’t exist). The following theorem tells us how find extremal points
using critical points.

Theorem 6.3. If 𝑎 is an extremal point of 𝑓 , 𝑎 is a critical point of 𝑓 .

WARNING: The converse is not true! (i.e. not all critical points are extremal!)

Name and draw a function
with a non-extremal critical
point.

Theorem 6.4 (First Derivative Test). Suppose 𝑎 is a critical point of 𝑓 .

If 𝑓 ′

changes from (+) to (−)
changes from (−) to (+)
doesn’t change sign

at 𝑎, then 𝑎 is


a local maximum of 𝑓 .
a local minimum of 𝑓 .
not a extremal point.

Theorem 6.5 (Second Derivative Test). Suppose 𝑓 ′ (𝑎) = 0 and 𝑓 ′′ is
continuous at 𝑎.

If
{
𝑓 ′′ (𝑎) > 0
𝑓 ′′ (𝑎) < 0

then 𝑎 is a
{
local minimum
local maximum

of 𝑓 .

Strategy: Finding Extremal Points

1. Solve 𝑓 ′ (𝑥) = 0 for 𝑥 .

2. Find other critical points (points of non-differentiability such as end-
points of the domain, cusps, peaks, and points of discontinuity).

3. If you are looking for local extremal points, use the first or second
derivative tests as necessary to classify points the critical points you
found.

4. If you are looking for global extremal points, evaluate 𝑓 at each critical
points to find the largest and smallest.
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6.7 Optimization
“Optimization”-style questions will ask you to optimize (maximize or minimize)
a certain quantity 𝐴 under specified constraints. The constraints will still allow
one variable 𝑥 of change. This means you will need to find the value of 𝑥 for
which 𝐴 is maximal or minimal.

The strategy for optimization problems is very similar to the strategy for re-
lated rates, but uses the theory of extremal points from the previous section.

Strategy: Optimization

1. Draw a picture.

2. Label the relevant quantities.

3. Find an equation for the quantity that you want to optimize𝐴 in terms
of the thing that you can change 𝑥 (and note the domain of 𝐴).

4. Find the extremal points of 𝐴.

6.8 Newton’s Method for Finding Roots
Imagine that you have an function 𝑓 and youwant to find the zeros (or roots) of 𝑓 .
That is, you want to find the values of 𝑥 such that 𝑓 (𝑥) = 0. Newton’s Method
is a computational algorithm that can sometimes be used to approximate such
a value. First, we’ll describe the algorithm, and then we’ll show how to do use
your TI calculator to implement it.

Imagine that 𝑥0 is an initial guess of a root of the function 𝑓 . If we can take
the derivative of 𝑓 , then we know that the tangent line of 𝑓 at 𝑥0 is

𝑦 − 𝑓 (𝑥0) = 𝑓 ′ (𝑥0) (𝑥 − 𝑥0)

and so we find (setting 𝑦 = 0 and solving for 𝑥 ) this tangent line intersects the
𝑥-axis at the point (𝑥1, 0), where

𝑥1 = 𝑥0 −
𝑓 (𝑥0)
𝑓 ′ (𝑥0)

.

We continue this, setting

𝑥2 = 𝑥1 −
𝑓 (𝑥1)
𝑓 ′ (𝑥1)

,

and so on:
𝑥𝑛+1 = 𝑥𝑛 − 𝑓 (𝑥𝑛)

𝑓 ′ (𝑥𝑛)
.

In many cases, this sequence of numbers should approach a zero of 𝑓 . Here
is the intuitive reason why: (1) if 𝑥𝑛 is not a zero of 𝑓 , then 𝑥𝑛+1 moves in the
direction of a zero, and (2) if 𝑥𝑛 is a zero of 𝑓 , then 𝑥𝑛+1 = 𝑥𝑛 .

The second point is obvious, but let’s look into the first point. If 𝑓 (𝑥𝑛) is not
0, then we have two cases:

• 𝑥𝑛 < 𝑥𝑛+1 (move to the right). Algebraically, this occurs exactly when
𝑓 (𝑥𝑛) and 𝑓 ′ (𝑥𝑛) have opposite sign (when 𝑓 is increasing below the 𝑥-
axis, or decreasing above the 𝑥-axis).

Draw a picture showing the
four cases.

• 𝑥𝑛+1 < 𝑥𝑛 (move to the left). Similarly, this occurs exactly when 𝑓 (𝑥𝑛)
and 𝑓 ′ (𝑥𝑛) have the same sign (when 𝑓 is increasing above the 𝑥-axis, or
decreasing below the 𝑥-axis).
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Seems reasonable, right? In either case we try to move in the direction of a
root.

Now, how do we use Newton’s method? Get out your TI calculator, and type
the function 𝑓 into Y1=, and 𝑓 ′ into Y2=. Then return to the main calculator
screen and type

0 : A

(or replace the 0 with a different initial guess 𝑥0) and click ENTER. Then type

A - Y1(A)/Y2(A) : A

and click ENTER. The variable A is now set as 𝑥1, and this value should be dis-
played. Click ENTER again and A is now 𝑥2. Continue clicking ENTER to find
𝑥𝑛 for higher 𝑛 (clicking 100 times will show you 𝑥100).

Although Newton’s method is generally an easy algorithm to implement and
use, it does not always work.

Consider 𝑓 (𝑥) = 𝑥3 and try to
use Newtons method to
detect the root 0 with the
initial guess 𝑥0 = 1.
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Part IV

Integration and Applications
7 The Definite Integral
For reasons that will not be immediately obvious, integration is opposite differ-
entiation on the ‘calculus coin.’

7.1 The Definite Integral
The definite integral of 𝑓 on (𝑎, 𝑏) is written∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

and is defined to be the signed area between the graph of 𝑓 and the 𝑥-axis (if such
a quantity exists).

When might this quantity not
exist?

𝑎

𝑏

𝑓 (𝑥)

+

−

Figure 10: The Geometric Definition of the Definite Integral

The figure shows the meaning of the word “signed”: areas that are above the
𝑥-axis are counted as positive, while those below are negative.

With no other tools available to you, the only way to compute definite inte-
grals right now is to draw the graph of 𝑓 and find the desired area using your
knowledge of geometry. This can be easy if 𝑓 is made up of lines and circular arcs,

Compute∫ 7

−3
2𝑥 + 4 𝑑𝑥

using geometry.

but if not, the way to compute a definite integral is not immediately obvious.

7.2 Reimann Sums
The first way that we will attempt to compute definite integrals is with a limit
of a Riemann sum. We will start by approximating the area by a collection of
vertical rectangles. Refer to the figure as an example as we construct a Riemann
sum.

Divide the interval (𝑎, 𝑏) into 𝑛 equal sub-intervals, each with width Δ𝑥 =
𝑏−𝑎
𝑛

. Then for each sub-interval draw a rectangle with base length Δ𝑥 on the
𝑥-axis and height determined by the value of 𝑓 at the right endpoint of the sub-
interval. The right endpoint of the 𝑘th sub-interval is 𝑥𝑘 = 𝑎 + 𝑘Δ𝑥 , so the area
of the 𝑘th rectangle is 𝑓 (𝑥𝑘 )Δ𝑥 . The area of all 𝑛 rectangles together is

𝑛∑︁
𝑘=1

𝑓 (𝑥𝑘 )Δ𝑥 .
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𝑎 𝑏

𝑓 (𝑥)

1 2 3 𝑛𝑘

Δ𝑥
𝑥𝑘

Figure 11: A Right Reimann Sum

Since we used the right endpoint of each sub-interval, we call this quantity the
𝑛th Right Riemann Sum:

𝑅𝑛 =

𝑛∑︁
𝑘=1

𝑓

(
𝑎 + 𝑘𝑏 − 𝑎

𝑛

)
𝑏 − 𝑎

𝑛
.

We could also have used the left endpoint of each sub-interval to determine the
height of each box, in which case we would get the 𝑛th Left Riemann Sum:

Draw a picture of 𝐿𝑛 .

𝐿𝑛 =

𝑛∑︁
𝑘=1

𝑓

(
𝑎 + (𝑘 − 1)𝑏 − 𝑎

𝑛

)
𝑏 − 𝑎

𝑛
.

If instead we use trapezoids above each sub-interval, we get the 𝑛th Trapezoid
Riemann Sum:

Draw a picture of 𝑇𝑛 .

𝑇𝑛 =

𝑛∑︁
𝑖=𝑘

𝑓

(
𝑎 + (𝑘 − 1) 𝑏−𝑎

𝑛

)
+ 𝑓

(
𝑎 + 𝑘 𝑏−𝑎

𝑛

)
2

𝑏 − 𝑎

𝑛
=
𝑅𝑛 + 𝐿𝑛

2 ,

where the 𝑘th trapezoid has width Δ𝑥 and heights determined by the left and
right endpoints of the 𝑘th sub-interval. (Remember that a trapezoid with width
𝑤 and heights ℎ1 and ℎ2 has area 𝐴 =

ℎ1+ℎ2
2 𝑤 .

When are 𝑅𝑛 , 𝐿𝑛 , and 𝑇𝑛
overestimates?
Underestimates?

In practice, it doesn’t matter which you choose to compute because of the
following theorem:

Theorem 7.1. With the notation as above,

lim
𝑛→∞

𝑅𝑛 = lim
𝑛→∞

𝐿𝑛 = lim
𝑛→∞

𝑇𝑛 =

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 .

This theorem should be intuitive: as 𝑛 gets larger, the width of each rectangle
gets smaller and the approximation gets better. More abstractly, this tells us that
integration and summation are intimately related: you can think of a definite
integral as a sum of infinitely thin boxes with height 𝑓 (𝑥) and width 𝑑𝑥 , one for
“each” value of 𝑥 in (𝑎, 𝑏). This perspective will be very helpful later.

Note the similarity in
notation between a definite
integral and the Riemann sum

𝑛∑︁
𝑘=1

𝑓 (𝑥𝑘 )Δ𝑥 .

For large 𝑛, a Riemann sum can give a very good approximation, but in gen-
eral it is not feasible to do by hand. However, if 𝑓 is a polynomial it is not hard
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to compute 𝑅𝑛 algebraically and then take a limit. In order to do so, we’ll need
the following summation identities:

𝑛∑︁
𝑘=1

1 = 𝑛

𝑛∑︁
𝑘=1

𝑘 =
𝑛(𝑛 + 1)

2
𝑛∑︁

𝑘=1
𝑘2 =

𝑛(𝑛 + 1) (2𝑛 + 1)
6

𝑛∑︁
𝑘=1

𝑘3 =
𝑛2 (𝑛 + 1)2

4

Here is an example:

• To compute
∫ 1
0 𝑥2 + 𝑥 𝑑𝑥 , first find 𝑅𝑛 :

𝑅𝑛 =

𝑛∑︁
𝑘=1

𝑓

(
𝑎 + 𝑘𝑏 − 𝑎

𝑛

)
𝑏 − 𝑎

𝑛

=

𝑛∑︁
𝑘=1

((
0 + 𝑘 1 − 0

𝑛

)2
+

(
0 + 𝑘 1 − 0

𝑛

))
1 − 0
𝑛

(plug in)

=

𝑛∑︁
𝑘=1

(
𝑘2

𝑛2
+ 𝑘

𝑛

)
1
𝑛

(expand and simplify)

=
1
𝑛3

𝑛∑︁
𝑘=1

𝑘2 + 1
𝑛2

𝑛∑︁
𝑘=1

𝑘 (factor)

=
1
𝑛3

𝑛(𝑛 + 1) (2𝑛 + 1)
6 + 1

𝑛2
𝑛(𝑛 + 1)

2 (use sum identities)

Then take the limit:

lim
𝑛→∞

𝑅𝑛 = lim
𝑛→∞

1
𝑛3

𝑛(𝑛 + 1) (2𝑛 + 1)
6 + 1

𝑛2
𝑛(𝑛 + 1)

2 =
2
6 + 1

2 =
5
6 .

Compute ∫ 1

0
𝑥3 𝑑𝑥

using the method of Riemann
Sums.

7.3 The Fundamental Theorem of Calculus
Let’s cut right to the chase:

Theorem 7.2 (The Fundamental Theorem of Calculus).∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝐹 (𝑏) − 𝐹 (𝑎),

where 𝐹 ′ = 𝑓 .

This theorem is the connection between differentiation and integration! It is
also how we will compute definite integrals from now on:

1. Find a function 𝐹 for which 𝐹 ′ = 𝑓 .

2. Evaluate 𝐹 (𝑏) − 𝐹 (𝑎).
The first point is called anti-differentiation, and is the harder step. Before

we get to that, let’s try to understand how this theorem agrees with our intuition
about Riemann Sums. If we take the 𝑏-derivative of the equation in the theorem,
we get

𝑑

𝑑𝑏

[∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥
]
=

𝑑

𝑑𝑏
[𝐹 (𝑏) − 𝐹 (𝑎)] = 𝑓 (𝑏).

This means that the rate at which the area is changing is 𝑓 (𝑏). This makes sense
in terms of Riemann sums: if we increase 𝑏 by a small amount Δ𝑏, the area will
change by about 𝑓 (𝑏)Δ𝑏. Thus the derivative of the area is 𝑓 (𝑏)Δ𝑏/Δ𝑏 = 𝑓 (𝑏).

Draw a picture of 𝑏
increasing by Δ𝑏. Then sit
and really think about this
until it makes sense.
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8 The Indefinite Integral
Since the Fundamental Theorem of Calculus tells us that we have to understand
anti-derivatives in order to compute definite integrals, this chapter will focus on
this task.

8.1 Anti-differentiation
If 𝐹 ′ = 𝑓 , we call 𝐹 an anti-derivative (or indefinite integral) of 𝑓 and write

𝐹 (𝑥) =
∫

𝑓 (𝑥) 𝑑𝑥 or 𝐹 =

∫
𝑓 .

Unfortunately, such a function 𝐹 does not always exist.
Check out this XKCD Comic.

The first thing to understand is that unlike derivatives, anti-derivatives are
not unique! This is because constant terms are always killed by differentiation.
For example, the derivative of 𝑥2 and 𝑥2 + 1 are both 2𝑥 , so both are worthy anti-
derivatives for 2𝑥 . To solve this problem, we consider the anti-derivative of 𝑓
to be the collection of all functions whose derivative is 𝑓 . These functions only
differ by a constant so we write “+𝐶” at the end of an anti-derivative to denote
the anti-derivative. For example,

∫
2𝑥 𝑑𝑥 = 𝑥2 +𝐶 .

Similarly to differentiation, we will build up a two-part collection of tools to
tackle integration problems.

1. rules to break functions up and reassemble

Scalar Multiplication
∫
𝑎𝑓 = 𝑎

∫
𝑓 .

Sum
∫
𝑓 +

∫
𝑔 =

∫
𝑓 +

∫
𝑔

Integration by Parts
∫
𝑓 ′𝑔 = 𝑓 𝑔 −

∫
𝑓 𝑔′

𝑢-substitution
∫
𝑓 ′ (𝑔(𝑥))𝑔′ (𝑥) 𝑑𝑥 = 𝑓 (𝑔(𝑥))

2. anti-derivatives of “basic” functions:

Power Rule
∫
𝑥𝑎 𝑑𝑥 =

{
1

𝑎+1𝑥
𝑎+1 +𝐶 𝑎 ≠ −1

ln |𝑥 | +𝐶 𝑎 = −1
Trig Rules

∫
sin(𝑥) 𝑑𝑥 = − cos(𝑥) +𝐶∫
cos(𝑥) 𝑑𝑥 = sin(𝑥) +𝐶

Exponential Rules
∫
𝑎𝑥 𝑑𝑥 = 1

ln(𝑎)𝑎
𝑥 +𝐶

Each of the integration rules are true because of a corresponding rule for
derivatives.

Which differentiation rules
do Integration by Parts and
𝑢-substitution correspond to?

Strategy: 𝑢-substitution

1. When presented with
∫
𝑓 ′ (𝑔(𝑥))𝑔′ (𝑥) 𝑑𝑥 , set 𝑢 = 𝑔(𝑥).

2. Then 𝑑𝑢 = 𝑔′ (𝑥) 𝑑𝑥 .

3. Substitute:
∫
𝑓 ′ (𝑔(𝑥))𝑔′ (𝑥) 𝑑𝑥 =

∫
𝑓 ′ (𝑢) 𝑑𝑢.

The main idea of 𝑢-substitution is “change the variable to make the integral
easier.”

Some examples:
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• By setting 𝑢 = sin(𝑥), we get 𝑑𝑢 = cos(𝑥) 𝑑𝑥 , so∫
sin2 (𝑥) cos(𝑥) 𝑑𝑥 =

∫
𝑢2 𝑑𝑢.

• By setting 𝑢 = 𝑥 + 1, 𝑑𝑢 = 𝑑𝑥 , so∫
𝑥
√
𝑥 + 1 =

∫
(𝑢 − 1)

√
𝑢 𝑑𝑢.

8.2 Partial Fraction Decomposition
When attempting to integrate a rational function, partial fraction decomposition
is a common trick that comes in handy. It effectively breaks a rational function
into a sum of rational functions with lower degree denominators.

Factor in denominator Term in decomposition

𝑎𝑥 + 𝑏 𝐴
𝑎𝑥+𝑏

(𝑎𝑥 + 𝑏)𝑘 𝐴1
𝑎𝑥+𝑏 + 𝐴2

(𝑎𝑥+𝑏 )2 + · · · + 𝐴𝑘

(𝑎𝑥+𝑏 )𝑘

𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝐴𝑥+𝐵
𝑎𝑥2+𝑏𝑥+𝑐

(𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑘 𝐴1𝑥+𝐵1
𝑎𝑥2+𝑏𝑥+𝑐 +

𝐴2𝑥+𝐵2
(𝑎𝑥2+𝑏𝑥+𝑐 )2 + · · · + 𝐴𝑘𝑥+𝐵𝑘

(𝑎𝑥2+𝑏𝑥+𝑐 )𝑘

While this table is not exhaustive, it covers the range of complexity required
in a calculus class.

Strategy: Partial Fraction Decomposition

1. Factor the denominator of the original rational expression.

2. Set the original expression equal to the sum of appropriate terms (see
table).

3. Write the sum as a single rational expression by finding a common
denominator.

4. Use the two numerators to solve a system of equations for the un-
known values, 𝐴, 𝐵, 𝐶 , etc.

8.3 Trigonometric Substitution
Another useful integration trick is Trig Substitution. The moral of this method is
to replace a square-root containing a quadratic with an equivalent trigonometric
expression that is easier to integrate. There are only three common examples of
this. The table below summarizes them.

Integrand Substitution Result
√
𝑎2 − 𝑥2 𝑥 = 𝑎 sin𝜃 𝑎 cos𝜃

√
𝑎2 + 𝑥2 𝑥 = 𝑎 tan𝜃 𝑎 sec𝜃

√
𝑥2 − 𝑎2 𝑥 = 𝑎 sec𝜃 𝑎 tan𝜃

38



8.3 Trigonometric Substitution 8 THE INDEFINITE INTEGRAL

• As an example, consider
∫ √

1 − 𝑥2 𝑑𝑥 . Set 𝑥 = sin𝜃 , so 𝑑𝑥 = cos𝜃 𝑑𝜃 .
Then we can do the change of variables:∫ √

1 − 𝑥2 𝑑𝑥 =

∫ √︁
1 − (sin𝜃 )2 cos𝜃 𝑑𝜃 =

∫
cos2 𝜃 𝑑𝜃 .

This is explained geometrically by drawing the following triangle.

√
1 − 𝑥2

𝑥1

𝜃 Draw the triangles for the
other two examples.
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9 MORE DEFINITE INTEGRALS

9 More Definite Integrals

9.1 Improper Integrals

9.2 Even and Odd Functions
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10 APPLICATIONS OF INTEGRALS

10 Applications of Integrals

10.1 Average Values

10.2 Probability

10.3 Volumes and Surface Area

10.4 Arc Length

10.5 Moments and Centroids

10.6 Work
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12 TESTS FOR CONVERGENCE AND DIVERGENCE

Part V

Sequences and Series
11 Sequences
A sequence of real numbers is an ordered and infinite list of real numbers.

12 Tests for Convergence and Divergence
Let (𝑎𝑛) be a sequence, and define a new sequence (𝑠𝑛) of “partial sums” by

𝑠𝑛 =

𝑛∑︁
𝑖=1

𝑎𝑖 = 𝑎1 + · · · + 𝑎𝑛 .

We write

lim
𝑛→∞

𝑠𝑛 = lim
𝑛→∞

𝑛∑︁
𝑖=1

𝑎𝑖 =

∞∑︁
𝑖=1

𝑎𝑖 =
∑︁

𝑎𝑛

and call
∑
𝑎𝑛 an infinite series. We are interested in when this quantity is finite:

• If lim𝑛→∞ 𝑠𝑛 is finite, we say that
∑
𝑎𝑛 is convergent (or that

∑
𝑎𝑛 con-

verges).

• When lim𝑛→∞ 𝑠𝑛 is infinite, we say that
∑
𝑎𝑛 is divergent (or that

∑
𝑎𝑛

diverges).

Theorem 12.1 (Divergence Test). If lim
𝑛→∞

𝑎𝑛 ≠ 0, then
∑
𝑎𝑛 will diverge.

Theorem 12.2 (Integral Test). Suppose that 𝑓 (𝑥) is a continuous, posi-
tive, and decreasing function on the interval [𝑘,∞) and that 𝑓 (𝑛) = 𝑎𝑛 .
Then ∫ ∞

𝑘

𝑓 (𝑥) 𝑑𝑥 is convergent ⇐⇒
∞∑︁
𝑛=𝑘

𝑎𝑛 is convergent.

Theorem 12.3 (The 𝑝-series Test). If 𝑘 > 0, then
∑∞

𝑛=𝑘
1
𝑛𝑝

converges if
𝑝 > 1 and diverges if 𝑝 ≤ 1.

Theorem 12.4 (Comparison Test). Suppose that we have two series
∑
𝑎𝑛

and
∑
𝑏𝑛 , with 0 ≤ 𝑎𝑛 ≤ 𝑏𝑛 for all 𝑛. Then∑︁

𝑏𝑛 converges =⇒
∑︁

𝑎𝑛 converges

and (by contraposition)∑︁
𝑎𝑛 diverges =⇒

∑︁
𝑏𝑛 diverges.
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Theorem 12.5 (Limit Comparison Test). Suppose that we have two se-
ries

∑
𝑎𝑛 and

∑
𝑏𝑛 with 𝑎𝑛 ≥ 0 and 𝑏𝑛 > 0 for all 𝑛. Define

𝑐 = lim
𝑛→∞

𝑎𝑛

𝑏𝑛
.

If 𝑐 is positive and finite, then either both series converge of both series
diverge.

Theorem 12.6 (Alternating Series Test). Suppose that we have a series∑
𝑎𝑛 and either

𝑎𝑛 = (−1)𝑛𝑏𝑛 or 𝑎𝑛 = (−1)𝑛+1𝑏𝑛

where 𝑏𝑛 ≥ 0 for all 𝑛. Then if,

1. lim
𝑛→∞

𝑏𝑛 = 0 and

2. {𝑏𝑛} is a decreasing sequence

the series
∑
𝑎𝑛 is convergent.

Theorem 12.7 (Absolute Convergence Test).

• If the series
∑ |𝑎𝑛 | is convergent, then

∑
𝑎𝑛 is called absolutely con-

vergent, and must also be convergent.

• If
∑
𝑎𝑛 converges but

∑ |𝑎𝑛 | diverges, then the series
∑
𝑎𝑛 is called

conditionally convergent.

Theorem 12.8 (Ratio Test). Suppose we have the series
∑
𝑎𝑛 . Define,

𝐿 = lim
𝑛→∞

����𝑎𝑛+1𝑎𝑛

���� .
Then,

1. if 𝐿 < 1 the series is absolutely convergent (and hence convergent).

2. if 𝐿 > 1 the series is divergent.

3. if 𝐿 = 1 the series may be divergent, conditionally convergent, or ab-
solutely convergent.
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Theorem12.9 (Root Test). Suppose that we have the series
∑
𝑎𝑛 . Define,

𝐿 = lim
𝑛→∞

𝑛
√︁
|𝑎𝑛 | = lim

𝑛→∞
|𝑎𝑛 |

1
𝑛 .

Then,

1. if 𝐿 < 1 the series is absolutely convergent (and hence convergent).

2. if 𝐿 > 1 the series is divergent.

3. if 𝐿 = 1 the series may be divergent, conditionally convergent, or ab-
solutely convergent.
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13 Power Series
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